Skip to Content
Merck

Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells.

Molecular pharmaceutics (2014-11-26)
Hyo Young Kim, Sabin Kim, Hae Jun Pyun, Jeehye Maeng, Kyunglim Lee
ABSTRACT

We reported previously that human translationally controlled tumor protein (TCTP) contains, at its NH2-terminus, a protein transduction domain (PTD), which we called TCTP-PTD, with the amino acid sequence MIIYRDLISH. In this report we describe how TCTP-PTD penetrates A549 human lung cancer cell membranes and promotes protein internalization. Cellular uptake of fluorescent TCTP-PTD and a recombinant fusion protein consisting of TCTP-PTD and GFP (green fluorescent protein) was analyzed by confocal fluorescence microscopy and flow cytometry. Inhibitor assays using several agents that perturb the internalization process revealed that TCTP-PTD transduces the cells partly via lipid-raft/caveola-dependent endocytosis and partly by macropinocytosis in a dynamin/actin/microtubule-dependent pathway. To trace the pathway followed by the penetration of TCTP-PTD, the localization of PTDs was investigated in the lipid-raft, subcellular, and ER fractions. We found that, after entry, TCTP-PTD is localized in the cytoplasm and cytoskeleton, but not in the nucleus, and is transported into endoplasmic reticulum (ER). Expression levels of caveolin-1 in A549 and HeLa cells are different, and these differences appear to contribute to the sensitivity of TCTP-PTD uptake inhibition, against lipid-raft depleter, nystatin. This elucidation of the underlying mechanism of TCTP-PTD translocation may help the design of approaches that employ TCTP-PTD in the cellular delivery of bioactive molecules.

MATERIALS
Product Number
Brand
Product Description

Supelco
Chlorpromazine hydrochloride, VETRANAL®, analytical standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
5-(N-Ethyl-N-isopropyl)amiloride
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Chlorpromazine hydrochloride, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ACS reagent
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Chlorpromazine hydrochloride, ≥98% (TLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Imidazole buffer Solution, BioUltra, 1 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Sucrose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sucrose, European Pharmacopoeia (EP) Reference Standard