Skip to Content
Merck
  • Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach.

Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach.

Stem cell research (2013-11-19)
Cecilia Granéli, Anna Thorfve, Ulla Ruetschi, Helena Brisby, Peter Thomsen, Anders Lindahl, Camilla Karlsson
ABSTRACT

Today, the tool that is most commonly used to evaluate the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro is the demonstration of the expression of multiple relevant markers, such as ALP, RUNX2 and OCN. However, as yet, there is no single surface marker or panel of markers which clearly defines human BMSCs (hBMSCs) differentiating towards the osteogenic lineage. The aim of this study was therefore to examine this issue. Stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was utilized to investigate differently expressed surface markers in osteogenically differentiated and undifferentiated hBMSCs. Labeled membrane proteins were analyzed by mass spectrometry (MS) and 52 proteins with an expression ratio above 2, between osteogenically differentiated and undifferentiated cells, were identified. Subsequent validation, by flow cytometry and ELISA, of the SILAC expression ratios for a number of these proteins and investigations of the lineage specificity of three candidate markers were performed. The surface markers, CD10 and CD92, demonstrated significantly increased expression in hBMSCs differentiated towards the osteogenic and adipogenic lineages. In addition, there was a slight increase in CD10 expression during chondrogenic differentiation. Furthermore, the expression of the intracellular protein, crystalline-αB (CRYaB), was only significantly increased in osteogenically differentiated hBMSCs and not affected during differentiation towards the chondrogenic or adipogenic lineages. It has been concluded from the present results that CD10 and CD92 are potential markers of osteogenic and adipogenic differentiation and that CRYaB is a potential novel osteogenic marker specifically expressed during the osteogenic differentiation of hBMSCs in vitro.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Millipore
Bifido Selective Supplement B, suitable for microbiology
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
α-Linoleic acid, ≥98%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
Safranin O, certified by the BSC
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Safranin O, Dye content ≥85 %
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Supelco
Dexamethasone, VETRANAL®, analytical standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
SAFC
L-Glutamine
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis