Merck
  • Home
  • Search Results
  • Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

Proceedings of the National Academy of Sciences of the United States of America (2015-03-17)
Adina Paytan, Alanna L Lecher, Natasha Dimova, Katy J Sparrow, Fenix Garcia-Tigreros Kodovska, Joseph Murray, Slawomir Tulaczyk, John D Kessler
ABSTRACT

Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, <500 nm particle size (DLS), >99.95% trace metals basis
Sigma-Aldrich
Carbon, mesoporous, average pore diameter 100±10 Å (typical), >99.95% trace metals basis
Sigma-Aldrich
Carbon, mesoporous, nanopowder, <500 nm particle size (DLS), >99.95% trace metals basis
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Supelco
Activated Charcoal Norit®, Norit® RBAA-3, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Carbon - Vitreous, foil, 25x25mm, thickness 0.5mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, foam, 275x330mm, thickness 3.2mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, rod, 200mm, diameter 7.0mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, foil, 25x25mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 10mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foil, 10mm disks, thickness 0.2mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, foil, 8x8mm, thickness 0.5mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 10x10mm, thickness 4.0mm, glassy carbon
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Methane-12C, 13C-depleted, 99.9 atom % 12C
Sigma-Aldrich
Carbon nanofibers, graphitized (iron-free), composed of conical platelets, D × L 100 nm × 20-200 μm
Carbon - Vitreous, tube, 100mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 20mm, bulk density 0.05g/cm3, porosity 96.5%