655201

Sigma-Aldrich

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

3.0-4.0% in H2O, high-conductivity grade

Sinónimos:
Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate), PEDOT:PSS
Número MDL:
NACRES:
NA.23

Nivel de calidad

100

grado

high-conductivity grade

concentración

3.0-4.0% in H2O

resistencia

1500 Ω/sq, 4 point probe measurement of dried coating based on initial 6μm wet thickness.
500 Ω/sq, 4 point probe measurement of dried coating based on initial 18μm wet thickness.

pH

1.5-2.5 (25 °C, dried coatings)

conductividad

>200 S/cm

viscosidad

10-30 cP(20 °C)

densidad

1.011 g/cm3 (dried coatings)

temp. de almacenamiento

2-8°C

¿Está buscando productos similares? Visit Guía de comparación de productos

Categorías relacionadas

Descripción general

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an organic semiconductor prepared by doping cationic poly(3,4-ethylenedioxythiophene) and poly(4-styrenesulfonate) anion. Its high electrical conductivity and good oxidation resistance make it suitable for electromagnetic shielding and noise suppression. PEDOT:PSS based polymeric films have a high transparency throughout the visible light spectrum and even in near IR and near UV regions, with virtually 100% absorption from 900-2000 nm. PEDOT provides the conduction properties and PSS forms a hydrated colloidal solution.

Aplicación

Ready-to-use high conductivity coating formulation.
PEDOT:PSS is an intrinsically conductive polymer (ICP) that can be coated on various substrates and nanostructures like fullerenes (C60) to form composites with high electrochemical properties for applications like low-cost printed electronics, optoelectronics, and polymeric solar cells. It can be used as a conductive hydrogel with polyethylene glycol-diacrylate (PEG-DA) for potential applications in tissue engineering. PEDOT:PSS also finds use in other organic electronic applications like organic thin film transistors (OTFTs) and dye sensitized solar cells (DSSCs).
Virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Conductive polymer blend.

Envase

5, 25 g in poly bottle
Packaged in poly bottles

pictogramas

Corrosion

Palabra de señalización

Danger

Frases de peligro

hazcat

Eye Dam. 1 - Skin Corr. 1

storage_class_code

8B - Non-combustible, corrosive hazardous materials

WGK Alemania

WGK 3

Punto de inflamabilidad F

Not applicable

Punto de inflamabilidad C

Not applicable

Equipo de protección personal

Faceshields, Gloves, Goggles, type ABEK (EN14387) respirator filter

Certificado de Análisis

Certificado de origen

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. What is the ratio of PEDOT to PSS in Product 655201?

    According to our supplier, the ratio of PEDOT to PSS is proprierary information.

  4. How should Product 655201, PEDOT/PSS, be stored?

    We recommend that you store this product at 2-8°C, which is in accordance with our MSDS.

  5. What is the miniumum conductivity for Product 655201, PEDOT/PSS?

    The minimum conductivity is 150 S/cm.

  6. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  7. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  8. Is this PEDOT:PSS, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), product p-doped or n-doped?

    This PEDOT:PSS product is based on hole-doped or P-type polymers. PEDOT can be n-doped, but the materials are too unstable to be of any commercial value.

  9. For product 655201, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), what is the relationship between film thickness and spin coating speed?

    Please consult this graph showing the spin coating curve for product 655201, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate).

  10. What is the temperature stability of this poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, product?

    Deposited poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, films can easily withstand temperatures in excess of 200°C for short duration and around 70°C in continuous service.  The aqueous dispersions of PEDOT:PSS, however, can be damaged by heating above 50°C for a prolonged period.

Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT: PSS counter electrode.
Balraju P, et al.
Synthetic Metals, 159(13), 1325-1331 (2009)
New Conducting and Semiconducting Polymers for Organic Photovoltaics.
Sapp S and Luebben S
MRS Online Proceedings Library, 1270(4), 261-266 (2010)
Fine patterning of glycerol-doped PEDOT: PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs
Lee M, et al.
Organic Electronics, 11(5}, 854-859 (2010)
The Influence of PEDOT to PSS Ratio on the Optical Properties of PEDOT: PSS Thin Solid Films-Insight from Spectroscopic Ellipsometry.
Bednarski H, et al.
Acta Physica Polonica A, 130(5), 1242-1244 (2016)
Mechanically robust, photopatternable conductive hydrogel composites.
Pal R, et al.
Reactive and Functional Polymers, 120(5), 66-73 (2017)
Artículos
In the emerging field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), there is a significant need for improved organic conducting and semiconducting materials. This paper reports our recent progress in two fields: 1) the development of solvent-based dispersions of the intrinsically conducting polymer (ICP) poly(3,4- ethylenedioxythiophene) (PEDOT) and 2) the synthesis of new electron-deficient (n-type) semiconducting polymers.
Más información
Find advantages of inorganic interface layer inks for organic electronic & other applications.
Más información
Conducting polymers such as polyaniline, polythiophene and polyfluorenes are now much in the spotlight for their applications in organic electronics and optoelectronics.
Más información
Progress in Organic Thermoelectric Materials & Devices including high ZT values of >0.2 at room temperature by p-type (PEDOT:PSS) & n-type (Poly[Kx(Ni-ett)]) materials are discussed.
Más información

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico