Merck
Todas las fotos(1)

906921

Sigma-Aldrich

PQT-12

Sinónimos:
Poly(3,3′′′-didodecyl[2,2′:5′,2′′:5′′,2′′′-quaterthiophene]-5,5′′′-diyl), Poly(4,4′′-didodecyl[2,2′:5′,2′′:5′′,2′′′-quaterthiophene]-5,5′′′-diyl)
Fórmula lineal:
(C40H56S4)n
Número de CAS:

descripción

Band gap: 2.27 eV
Eox = 0.45 V
Solution processable (chloroform, chlorobenzene, etc)
LIFT transferable

formulario

solid

mol peso

Mw 10,000-25,000 by GPC

color

brown

solubilidad

>5 mg/mL (in CHCl3)

λmax

473 nm in toluene

Energía orbital

HOMO -5.24 eV 
LUMO -2.97 eV 

temp. de almacenamiento

15-25°C

Categorías relacionadas

Aplicación

PQT-12 is a solution processable p-type, π-conjugated semiconductor for felxible printed electronics such as high sensitivity chemical sensors based on organic thin film transistors. It can also be used as donor material in organic solar cells.

Researches show that the microstructure of PQT-12 can be controled by the choice of solvent.

Study has shown PQT-12 spin-coated on a donor substrate can be transfered by means of solid phase laser-induced forward transfer (LIFT) technique onto Si/SiO2 receiver substrates to form the active layer without altering its microstructure. This is important for potential large-scale fabrication of organic thin-film transistors (OTFTs). Bottom gated OTFTs obtained by this means demonstrated hole mobility values of (2.6 ± 1.3) × 10-2 cm2/Vs, and lower parasitic resistance for dielectric surface roughness around 1.2 nm and Pt electrodes. Authors attributed the resulted higher performances to i) the well-ordering of PQT-12 surface when a high-boiling-point solvent is used, and ii) the less limitating Pt source/drain electrodes.

A 20 MHz organic nanodiode has been demonstrated imploying PQT-12 as the semiconducting active layer. The obtained self-switching devices (SSDs) are single layered, planar structures that can be easily fabricated in a single step of nanolithography. The SSDs possess substantially lower parasitic capacitance between contacts than conventional organic diodes and organic thin-film transistors, and the study demonstrated that the nano-rectifiers can operate at frequencies well above both 125/134 kHz and 13.56 MHz RFID communication bands.

PQT-12:PEO nanofibers can be well-aligned on the textile composite substrate by electrospinning onto a rotating drum collector. The nanofiber phototransistors fabricated on the PET/PDMS textile composite substrate show highly stable device performance (on-current retention up to 82.3 (±6.7)%) under extreme bending conditions, with a bending radius down to 0.75 mm and repeated tests over 1000 cycles. The maximum photoresponsivity, photocurrent/dark-current ratio, and external quantum efficiency under blue light illumination of the PQT-12:PEO nanofiber phototransistors were 930 mA/W, 2.76, and 246%, respectively. Also, highly flexible 10 × 10 photosensor arrays were fabricated which are able to detect incident photonic signals with high resolution. These PQT-12:PEO based flexible photosensors have high potential for applications as wearable photosensors.

Código de clase de almacenamiento

11 - Combustible Solids

WGK

WGK 3

Punto de inflamabilidad F

Not applicable

Punto de inflamabilidad C

Not applicable

Certificado de Análisis

Introduzca el número de lote para buscar un certificado de análisis (COA).

Certificado de origen

Introduzca el número de lote para buscar un Certificado de origen (COO).

Más documentos

Quotes and Ordering

Electrical and ammonia gas sensing properties of PQT-12/CdSe quantum dots composite-based organic thin film transistors
Kumar C, et al.
IEEE Sensors Journal, 18(15), 6805-6805 (2018)
Self-assembly of regioregular poly (3,3'''-didodecylquarterthiophene) in chloroform and study of its junction properties
Singh M K, et al.
Journal of Chemical and Pharmaceutical Sciences , 217, 12-17 (2017)
Laser printed organic semiconductor PQT-12 for bottom-gate organic thin-film transistors: Fabrication and characterization
Makrygianni M, et al.
Journal of Chemical and Pharmaceutical Sciences , 390, 823-830 (2016)
Modification of the Poly(bisdodecylquaterthiophene) Structure for High and Predominantly Nonionic Conductivity with Matched Dopants
Hui Li, et al.
Journal of the American Chemical Society, 139,, 11149- 11157 (2017)
20 megahertz operation of organic nanodiodes.
Majewski L A, et al.
Physica Status Solidi B, 253(8), 1507-1510 (2016)

Artículos

High Crystalline, Solution-Processable Organic Field-Effect Transistors

Dr. Chan and researchers highlight flexible transistors are the building blocks of next-generation soft electronics. Among all the reported material systems that can be fabricated by researchers, such as circuits, biosensors, stretchable displays, and others,1–5 small molecular weight organic semiconductors are among the most promising candidates for flexible transistor applications. For these small molecular weight organic semiconductors, the semiconductor forming the conductive channel dominates the device performance.

Advancements in the Fabrication of Integrated Organic Electronics

Professor Tokito and Professor Takeda share their new materials, device architecture design principles, and performance optimization protocols for printed and solution-processed, low-cost, highly flexible, organic electronic devices.

Progress for High Performance Tandem Organic Solar Cells

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico