Insights and issues with simulating terrestrial DOC loading of Arctic river networks.

Ecological applications : a publication of the Ecological Society of America (2014-02-22)
David W Kicklighter, Daniel J Hayes, James W McClelland, Bruce J Peterson, A David McGuire, Jerry M Melillo
RESUMEN

Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Activated charcoal, DARCO®, −100 mesh particle size, powder
Supelco
Activated charcoal, powder
Sigma-Aldrich
Activated charcoal, powder, -100 particle size (mesh), decolorizing
Sigma-Aldrich
Activated charcoal, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Activated charcoal, DARCO®, 20-40 mesh particle size, granular
Supelco
Activated charcoal, puriss. p.a., powder
Sigma-Aldrich
Carbon, glassy, spherical powder, 2-12 μm, 99.95% trace metals basis
Sigma-Aldrich
Carbon, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Activated charcoal, untreated, granular, ≤5 mm
Sigma-Aldrich
Activated charcoal, DARCO®, 4-12 mesh particle size, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Activated charcoal, untreated, granular, 8-20 mesh
Sigma-Aldrich
Activated charcoal, acid-washed with hydrochloric acid
Sigma-Aldrich
Activated charcoal, DARCO®, 12-20 mesh, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Supelco
Activated Charcoal Norit®, Norit® RBAA-3, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Supelco
Activated charcoal, for the determination of AOX, 50-150 μm particle size
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Activated Charcoal, meets USP testing specifications
Sigma-Aldrich
Activated charcoal, untreated, granular, 20-60 mesh
Supelco
Activated charcoal, suitable for GC