Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro.

Journal of biomechanical engineering (2015-03-18)
Judith Bleuel, Frank Zaucke, Gert-Peter Brüggemann, Juliane Heilig, Marie-Louise Wolter, Nina Hamann, Sara Firner, Anja Niehoff
RESUMEN

Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
L-Cysteine, 97%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Ethidium bromide solution, BioReagent, for molecular biology, 10 mg/mL in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Cysteine, from non-animal source, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
p-Coumaric acid, ≥98.0% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)