All Photos(1)



Methacrylic acid

contains 250 ppm MEHQ as inhibitor, 99%

2-Methacrylic acid, 2-Methylpropenoic acid
Linear Formula:
CAS Number:
Molecular Weight:
EC Number:
MDL number:
PubChem Substance ID:

vapor density

>3 (vs air)

vapor pressure

1 mmHg ( 20 °C)





autoignition temp.

752 °F


250 ppm MEHQ as inhibitor

refractive index

n20/D 1.431 (lit.)


2.0-2.2 (20 °C, 100 g/L)


163 °C (lit.)


12-16 °C (lit.)


1.015 g/mL at 25 °C (lit.)

SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

General description

Methacrylic acid (MAA) is an organic compound, colorless, viscous liquid. It is a monofunctional methacrylayte monomer. It is soluble in warm water and miscible in most organic solvents. MAA is used as a starting material for the production of its esters, especially methyl methacrylate and poly methyl methacrylate (PMMA).


MAA is used to synthesize poly(methacrylic acid)-g-poly(ε-caprolactone) copolymers, polymeric blends with PMMA and hydroxyethyl methacrylate (HEMA)-MAA hydrogels.


5, 100, 500 g in glass bottle
18 kg in VerSA-Flow™
2, 3 kg in glass bottle


CorrosionSkull and crossbones

Signal Word


Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Skin Corr. 1A - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

6.1C - Combustible, acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects



Flash Point(F)

152.6 °F - closed cup

Flash Point(C)

67 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Enter Lot Number to search for Certificate of Analysis (COA).

Certificate of Origin

Enter Lot Number to search for Certificate of Origin (COO).

Reversible Addition Fragmentation Chain Transfer
(RAFT) Polymerization
Moad G, et al.
Material Matters, 5(1) (2010)
Synthesis of graft copolymers of poly(methacrylic acid)-g-poly(?-caprolactone) by coupling ROP and RAFT polymerizations
Kiehl J, et al.
Polymer, 53(3), 694-700 (2012)
Thomas J Dursch et al.
Biomaterials, 35(2), 620-629 (2013-10-24)
Two-photon confocal microscopy and back extraction with UV/Vis-absorption spectrophotometry quantify equilibrium partition coefficients, k, for six prototypical drugs in five soft-contact-lens-material hydrogels over a range of water contents from 40 to 92%. Partition coefficients were obtained for acetazolamide, caffeine, hydrocortisone
Josué A Torres-Ávalos et al.
Polymers, 13(4) (2021-03-07)
Design of a smart drug delivery system is a topic of current interest. Under this perspective, polymer nanocomposites (PNs) of butyl acrylate (BA), methacrylic acid (MAA), and functionalized carbon nanotubes (CNTsf) were synthesized by in situ emulsion polymerization (IEP). Carbon
Alexandra Muñoz-Bonilla et al.
Polymers, 12(12) (2020-12-03)
Several hydrogels based on 2-hydroxyethyl methacrylate and a methacrylic monomer containing a thiazole group in its lateral chain have been prepared by thermal polymerization at 60 °C in water solution varying the chemical composition of the gels. The posterior quaternization


Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Continuous Flow Manufacturing for Monomer Synthesis

The manufacture of monomers for use in ophthalmic applications is driven by the need for higher purity, improved reliability of manufacturing supply, but ultimately by the need for the increased comfort, convenience, and safety of contact lens wearers. Daily wear contact lenses have the potential to fill this need for many customers; however, their widespread use is constrained by higher costs compared to weekly- or monthly-based lenses. New approaches that improve cost structure and result in higher quality raw materials are needed to help make contact lenses more affordable and accelerate growth of the contact lens market.

Stimuli-Responsive Materials as Intelligent Drug Delivery Systems

By altering the physicochemical properties, smart or intelligent drug delivery systems can be designed to deliver therapeutic molecules on-demand. Learn more about the application of stimuli-responsive materials in drug delivery.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service