Merck
  • Home
  • Search Results
  • Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

The AAPS journal (2014-12-17)
John T Wilson, Almar Postma, Salka Keller, Anthony J Convertine, Graeme Moad, Ezio Rizzardo, Laurence Meagher, John Chiefari, Patrick S Stayton
ABSTRACT

Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell responses to protein-based vaccines.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydroquinone, meets USP testing specifications
Sigma-Aldrich
Hydroquinone, ReagentPlus®, ≥99%
Sigma-Aldrich
5-(N,N-Dimethyl)amiloride hydrochloride
Sigma-Aldrich
Hydroquinone, ReagentPlus®, 99%
Sigma-Aldrich
Isobutyronitrile, 99%
Sigma-Aldrich
Isobutyronitrile, 99.6%
Sigma-Aldrich
Anisole, anhydrous, 99.7%
Sigma-Aldrich
3-Chlorophenol, 98%
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Supelco
Anisole, analytical standard
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Supelco
Hydroquinone, certified reference material, TraceCERT®
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Chlorophenol Red-β-D-galactopyranoside, ≥90% (HPLC)
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Hydroquinone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Anisole, ≥99%, FCC, FG
Supelco
L-Glutamine, certified reference material, TraceCERT®
Supelco
Anisole, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Hydroquinone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Anisole, ReagentPlus®, 99%
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture