All Photos(1)



Dulbecco′s Modified Eagle′s Medium - high glucose

HEPES modification, With 4500 mg/L glucose, 25 mM HEPES, and sodium bicarbonate, without L-glutamine and sodium pyruvate, liquid, sterile-filtered, suitable for cell culture


Quality Level






cell culture | mammalian: suitable


endotoxin, tested


phenol red: yes
NaHCO3: yes
L-glutamine: no
glucose: high
HEPES: 25 mM
sodium pyruvate: no

shipped in


storage temp.


Looking for similar products? Visit Product Comparison Guide


Dulbecco′s Modified Eagle′s Medium (DMEM) is a modification of Basal Medium Eagle (BME) that contains four-fold concentrations of the amino acids and vitamins. The original formulation contained 1000 mg/L of glucose and was used to culture embryonic mouse cells. Since then, it has been modified in several ways to support primary cultures of mouse and chicken cells, as well as a variety of normal and transformed cells. Each of these media offers a different combination of L-glutamine and sodium pyruvate. Additionally, the glucose levels have been raised to 4500 mg/L, contributing to the name "DMEM/High".


Supplement with 0.584 g/L L-glutamine.

Storage Class Code

12 - Non Combustible Liquids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Enter Lot Number to search for Certificate of Analysis (COA).

Certificate of Origin

Enter Lot Number to search for Certificate of Origin (COO).

Ruut Kummala et al.
Biomacromolecules, 21(4), 1560-1567 (2020-03-10)
Biodegradable and renewable materials, such as cellulose nanomaterials, have been studied as a replacement material for traditional plastics in the biomedical field. Furthermore, in chronic wound care, modern wound dressings, hydrogels, and active synthetic extracellular matrices promoting tissue regeneration are
Shelbi Christgen et al.
Frontiers in cellular and infection microbiology, 10, 237-237 (2020-06-18)
Programmed cell death plays crucial roles in organismal development and host defense. Recent studies have highlighted mechanistic overlaps and extensive, multifaceted crosstalk between pyroptosis, apoptosis, and necroptosis, three programmed cell death pathways traditionally considered autonomous. The growing body of evidence
Ana Asenjo-Bueno et al.
Antioxidants (Basel, Switzerland), 10(8) (2021-08-28)
Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months
Frances Gays et al.
PloS one, 6(3), e18475-e18475 (2011-04-13)
Comprehensive analysis of the transcription start sites of the Ly49 genes of C57BL/6 mice using the oligo-capping 5'-RACE technique revealed that the genes encoding the "missing self" inhibitory receptors, Ly49A, C, G, and I, were transcribed from multiple broad regions
Benjamin E Maimon et al.
Scientific reports, 8(1), 14076-14076 (2018-09-21)
Optogenetic technologies have been the subject of great excitement within the scientific community for their ability to demystify complex neurophysiological pathways in the central (CNS) and peripheral nervous systems (PNS). The excitement surrounding optogenetics has also extended to the clinic

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service