901642

Sigma-Aldrich

Methoxy poly(ethylene glycol) KAT

PEG average Mn 10,000

别名:
mPEG KAT, KAT PEG 10k
线性分子式:
H3CO[CH2CH2O]nCH2CH2O(C6H3BF3KNO)
NACRES:
NA.23

form

powder or solid

mol wt

PEG average Mn 10,000
PEG ~10,000 Da

color

off-white to pale yellow

storage temp.

2-8°C

正在寻找类似产品? Visit 产品对比指南

General description

Methoxy poly(ethylene glycol) KAT 10K (mPEG KAT 10K) is a monofunctional, methyl ether PEG featuring a terminal potassium acyltrifluoroborate for facile, rapid functionalization. Potassium acyltrifluoroborates (KATs) are stable functional groups that undergo rapid amide-forming ligations with hydroxylamines in aqueous media, in the presence of unprotected functional groups. In addition to its compatibility, these reactions proceed relatively quickly, lending to their use with sensitive biological reagents. This conjugation reaction offers a new approach to the synthesis of complex molecules without the complication of side reactions, such protein-polymer conjugates. KATs also undergo amide or imide-forming ligations in acidic conditions when reacted with primary amines or amides, respectively, as an alternative to classical acylation chemistry.

RIDADR

NONH for all modes of transport

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations in water.
Saito, et al.
ACS Chemical Biology, 10, 1026-1033 (2015)
Potassium Acyltrifluoroborate (KAT) Ligations are Orthogonal to Thiol-Michael and SPAAC Reactions: Covalent Dual Immobilization of Proteins onto Synthetic PEG Hydrogels.
Mazunin D, et al.
Helvetica Chimica Acta, 100 (2) (2017)
Alberto Osuna Gálvez et al.
Journal of the American Chemical Society, 139(5), 1826-1829 (2017-01-25)
Current methods for constructing amide bonds join amines and carboxylic acids by dehydrative couplings-processes that usually require organic solvents, expensive and often dangerous coupling reagents, and masking other functional groups. Here we describe an amide formation using primary amines and...
Fumito Saito et al.
ACS chemical biology, 10(4), 1026-1033 (2015-01-13)
Chemoselective ligation reactions have contributed immensely to the development of organic synthesis and chemical biology. However, the ligation of stoichiometric amounts of large molecules for applications such as protein-protein conjugates is still challenging. Conjugation reactions need to be fast enough...
Amide-forming ligation of acyltrifluoroborates and hydroxylamines in water.
Aaron M Dumas et al.
Angewandte Chemie (International ed. in English), 51(23), 5683-5686 (2012-04-28)
相关内容
The Bode Group aims to develop new reactions and reagents for the synthesis of complex molecules. The Bode Group has developed N-mesityl-substituted NHCs as organocatalysts for the catalytic generation of reactive species including activated carboxylates, homoenolates, and enolates. These novel catalysts and reactions have made possible a new generation of highly enantioselective annulations from simple starting materials under mild reaction conditions, usually at room temperature and without added reagents. Furthering the goal of designing new reagents to enable the assembly of complex molecules, the Bode group has developed SnAP reagents for the facile, one-pot conversion of aldehydes into N-unprotected, saturated N-heterocycles, including bicyclic and spirocyclic structures. These easy to handle reagents provide a simple and robust alternative to the challenging and restrictive cross-coupling methods for the functionalization of saturated N-heterocycles.
了解更多

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。