Search Within
Content Type


Applied Filters:
Applications:Drug delivery
Content Type:Technical Article
逆加成-断裂链转移 (RAFT)聚合
Gold Nanoparticles: Properties and Applications
Gold (Au) nanoparticles have tunable optical and electronic properties and are used in a number of applications including photovoltaics, sensors, drug delivery & catalysis.
Layer-by-Layer (LbL) Assembly, A "Gentle Yet Flexible" Method Toward Functional Biomaterials
Recently, layer-by-layer (LbL) assembly has emerged as a versatile, gentle and, simple method for immobilization of functional molecules in an easily controllable thin film morphology.1,2 In this short review, we introduce recent advances in functional systems fabricated by using the
Chemistry in (Bio)Materials Science
"Click" Chemistry in (Bio)Materials Science
Fabrication of Drug-loaded Microparticles Using Hydrogel Technology and Recent Innovation in Automation
Microparticle drug delivery systems have been extensively researched and applied to a wide variety of pharmaceutical and medical applications due to a number of advantages including injectability, local applicability to target tissues and sites, and controlled drug delivery over a
Smart Nanofiber Meshes as a Local Drug Delivery Platform
Professor Mitsuhiro Ebara provides insights on several types of smart nanofiber mesh systems that have been explored for different drug delivery purposes.
Solubility enhancement of hydrophobic drugs via drug-loaded micelles using biodegradable PEG- polyester diblock copolymers
One of the common difficulties with intravenous drug delivery is low solubility of the drug. The requirement for large quantities of saline to dissolve such materials limits their clinical use, and one solution for this problem that has recently generated
Poly(Amino Acid) Block Copolymers for Drug Delivery and other Biomedical Applications
Humankind has utilized protein materials throughout its existence, starting with the use of materials such as wool and silk for warmth and protection from the elements and continuing with the use of recombinant DNA techniques to synthesize proteins with unique
Polyethylene Glycol Building Blocks for PEGylation
Circulatory half-life is a key success factor for new drugs. In this respect, PEGylation or PEG-ing—the modification of potential candidates ranging from non-peptidic small molecules to peptides and proteins, antibody fragments, aptamers, and saccharides or oligonucleotides with polyethylene glycol chains—offers
Injectable Hydrogels for Cell Delivery and Tissue Regeneration
The use of hydrogel-based biomaterials for the delivery and recruitment of cells to promote tissue regeneration in the body is of growing interest. This article discussed the application of hydrogels in cell delivery and tissue regeneration.
Poly(Glycerol Sebacate) in Tissue Engineering and Regenerative Medicine
The world of commercial biomaterials has stagnated over the past 30 years as few materials have successfully transitioned from the bench to clinical use. Synthetic aliphatic polyesters have continued to dominate the field of resorbable biomaterials due to their long
Stimuli-Responsive Materials as Intelligent Drug Delivery Systems
By altering the physicochemical properties, smart or intelligent drug delivery systems can be designed to deliver therapeutic molecules on-demand. Learn more about the application of stimuli-responsive materials in drug delivery.
Nanoparticle-Based Drug and Gene Delivery for Tumor Targeting
Professor Yoshiki Katayama (Kyushu University, Japan) discusses recent advances in drug delivery systems and strategies that exploit the EPR effect, with a special focus on stimuli-responsive systems based on novel materials.
Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization
RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.
RESOMER® Biodegradable Polymers for Medical Device Applications Research
Find use of RESOMER® biodegradable polymers in medical device applications research.
Protein- and Peptide- Polymer Conjugates by RAFT Polymerization
The modification of biomacromolecules, such as peptides and proteins, through the attachment of synthetic polymers has led to a new family of highly advanced biomaterials with enhanced properties.
Poly(2-Oxazoline)s: The Versatile Polymer Platform for Biomedicine
The introduction of polymers into the biomedical field has opened new avenues in tissue engineering, implant design, biosensing, and drug delivery.
Functional Biomaterials Synthesized by Double-Head Polymerization Agents
Over the past two decades, the rapid advance of controlled living polymerization (CLP) techniques.
Poly(2-oxazoline)s (POx) in Biomedical Applications
Poly(2-oxazoline)s (POx) can be viewed as conformational isomers of polypeptides. They are synthesized via living cationic ringopening polymerization (LCROP) of 2-oxazolines and were almost simultaneously discovered in 1966 by the groups of Litt, Tomalia, Fukui and Seeliger.
Degradex® Microspheres and Nanoparticles for Drug Delivery Research and Formulation Development
Study on how Degradex® PLGA microspheres and nanoparticles can be used for drug delivery research and formulation development.
Solubility Enhancement of Poorly Water Soluble Molecules Using Dendrimers
Environmental concerns are driving the replacement of volatile organic solvents by water and aqueous mixtures. This change often creates challenges because many organic molecules show low water solubility.
Page 1 of 3
Page 1 of 3