• 主页
  • 查找结果
  • Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance.

Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance.

Langmuir : the ACS journal of surfaces and colloids (2018-09-22)
Kwahun Lee, Yan Yu
摘要

Amphiphilic nanoparticles are known to cause defects in lipid bilayers. However, we have shown recently that their disruptive effects are significantly enhanced when surface charges and hydrophobic groups are spatially segregated on opposite hemispheres of a single particle. Using the same amphiphilic cationic/hydrophobic Janus particle system, here we investigate the role of the hydrophilic-lipophilic balance of the particles (namely the Janus balance) in their interaction with zwitterionic lipid bilayers. We show that Janus nanoparticles induce holes in lipid bilayers only when the hydrophobic side of particles occupies 20% or more of their surfaces. Beyond this threshold, the larger the hydrophobic surface area, the more attractive the particles are to lipid bilayers, and a lower particle concentration is needed for causing defects in the bilayers. The results establish a quantitative relationship between the surface coverage of hydrophobicity on the Janus particles and the particle-induced disruption to the lipid membranes.

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。