• 主页
  • 查找结果
  • Serotonin inhibits axonal regeneration of identifiable descending neurons after a complete spinal cord injury in lampreys.

Serotonin inhibits axonal regeneration of identifiable descending neurons after a complete spinal cord injury in lampreys.

Disease models & mechanisms (2019-02-03)
Daniel Sobrido-Cameán, Diego Robledo, Laura Sánchez, María Celina Rodicio, Antón Barreiro-Iglesias
摘要

Classical neurotransmitters are mainly known for their roles as neuromodulators, but they also play important roles in the control of developmental and regenerative processes. Here, we used the lamprey model of spinal cord injury to study the effect of serotonin in axon regeneration at the level of individually identifiable descending neurons. Pharmacological and genetic manipulations after a complete spinal cord injury showed that endogenous serotonin inhibits axonal regeneration in identifiable descending neurons through the activation of serotonin 1A receptors and a subsequent decrease in cyclic adenosine monophosphate (cAMP) levels. RNA sequencing revealed that changes in the expression of genes that control axonal guidance could be a key factor determining the serotonin effects during regeneration. This study provides new targets of interest for research in non-regenerating mammalian models of traumatic central nervous system injuries and extends the known roles of serotonin signalling during neuronal regeneration. This article has an associated First Person interview with the first author of the paper.

材料
货号
品牌
产品描述

Sigma-Aldrich
N6,2′-O-二丁酰基腺苷 3′,5′-环单磷酸 钠盐, ≥97% (HPLC), powder
Sigma-Aldrich
WAY-100135, ≥98% (HPLC)

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。