• 主页
  • 查找结果
  • Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles.

Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles.

Colloids and surfaces. B, Biointerfaces (2020-01-17)
Honey Priya James, Sameer Jadhav
摘要

Chitosan is a polysaccharide that has shown promise in liposomal drug delivery because of certain desirable properties such as muco-adhesivity, biodegradability and low toxicity. In this study, chitosan-bearing 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles were prepared using inverse phase precursor method to measure their mechanical and transport properties. We show that while an increase in chitosan: lipid molar ratio in the vesicle bilayer at pH 7 led to a substantial increase in its bending modulus, chitosan-mediated change in bending modulus was diminished at pH 4.5. Water permeability across the vesicle bilayer, as well as phospholipid diffusivity within supported lipid bilayers, were also found to decrease with increasing chitosan: lipid molar ratio. Together, these findings demonstrate that incorporation of chitosan in phospholipid bilayers modulates the mechanical and transport properties of liposomes which may affect their in vivo circulation time and drug release rate.

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。