• 主页
  • 查找结果
  • Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models.

Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models.

Langmuir : the ACS journal of surfaces and colloids (2020-04-22)
Saeed Nazemidashtarjandi, Amid Vahedi, Amir M Farnoud
摘要

Understanding the mechanisms by which engineered nanomaterials disrupt the cell plasma membrane is crucial in advancing the industrial and biomedical applications of nanotechnology. While the role of nanoparticle properties in inducing membrane damage has received significant attention, the role of the lipid chemical structure in regulating such interactions is less explored. Here, we investigated the role of the lipid chemical structure in the disruption of lipid vesicles by unmodified silica, carboxyl-modified silica, and unmodified polystyrene nanoparticles (50 nm). The role of the lipid headgroup was examined by comparing nanoparticle effects on vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vs an inverse phosphocholine (PC) with the same acyl chain structure. The role of acyl chain saturation was examined by comparing nanoparticle effects on saturated vs unsaturated PCs and sphingomyelins. Nanoparticle effects on PCs (glycerol backbone) vs sphingomyelins (sphingosine backbone) were also examined. Results showed that the lipid headgroup, backbone, and acyl chain saturation affect nanoparticle binding to and disruption of the membranes. A low headgroup tilt angle and the presence of a trimethylammonium moiety at the vesicle surface are required for unmodified nanoparticles to induce membrane disruption. Lipid backbone structure significantly affects nanoparticle-membrane interactions, with carboxyl-modified particles only disrupting lipids containing cis unsaturation and a sphingosine backbone. Acyl chain saturation makes vesicles more resistant to particles by increasing lipid packing in vesicles, impeding molecular interactions. Finally, nanoparticles were capable of changing the lipid packing, resulting in pore formation in the process. These observations are important in interpreting nanoparticle toxicity to biological membranes.

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。