• 主页
  • 查找结果
  • Taxonomically Restricted Wheat Genes Interact With Small Secreted Fungal Proteins and Enhance Resistance to Septoria Tritici Blotch Disease.

Taxonomically Restricted Wheat Genes Interact With Small Secreted Fungal Proteins and Enhance Resistance to Septoria Tritici Blotch Disease.

Frontiers in plant science (2020-06-02)
Ciarán J Brennan, Binbin Zhou, Harriet R Benbow, Sobia Ajaz, Sujit J Karki, James Gerard Hehir, Aoife O'Driscoll, Angela Feechan, Ewen Mullins, Fiona M Doohan
摘要

Understanding the nuances of host/pathogen interactions are paramount if we wish to effectively control cereal diseases. In the case of the wheat/Zymoseptoria tritici interaction that leads to Septoria tritici blotch (STB) disease, a 10,000-year-old conflict has led to considerable armaments being developed on both sides which are not reflected in conventional model systems. Taxonomically restricted genes (TRGs) have evolved in wheat to better allow it to cope with stress caused by fungal pathogens, and Z. tritici has evolved specialized effectors which allow it to manipulate its' host. A microarray focused on the latent phase response of a resistant wheat cultivar (cv. Stigg) and susceptible wheat cultivar (cv. Gallant) to Z. tritici infection was mined for TRGs within the Poaceae. From this analysis, we identified two TRGs that were significantly upregulated in response to Z. tritici infection, Septoria-responsive TRG6 and 7 (TaSRTRG6 and TaSRTRG7). Virus induced silencing of these genes resulted in an increased susceptibility to STB disease in cvs. Gallant and Stigg, and significantly so in the latter (2.5-fold increase in STB disease). In silico and localization studies categorized TaSRTRG6 as a secreted protein and TaSRTRG7 as an intracellular protein. Yeast two-hybrid analysis and biofluorescent complementation studies demonstrated that both TaSRTRG6 and TaSRTRG7 can interact with small proteins secreted by Z. tritici (potential effector candidates). Thus we conclude that TRGs are an important part of the wheat-Z. tritici co-evolution story and potential candidates for modulating STB resistance.

材料
货号
品牌
产品描述

Sigma-Aldrich
胰蛋白酶 来源于猪胰腺, lyophilized powder, BioReagent, suitable for cell culture, 1,000-2,000 BAEE units/mg solid
Sigma-Aldrich
α-糜蛋白酶 来源于牛胰腺, Type II, lyophilized powder, ≥40 units/mg protein
Sigma-Aldrich
Nα-p甲苯磺酰基-L-精氨酸甲酯 盐酸盐
Sigma-Aldrich
胰蛋白酶-胰凝乳蛋白酶抑制剂 来源于大豆, lyophilized powder
Sigma-Aldrich
N-苯甲酰基-L-酪氨酸乙酯