Evidence for multiple glucuronide transporters in rat liver microsomes.

Biochemical pharmacology (2004-09-04)
Miklós Csala, Adam G Staines, Gábor Bánhegyi, József Mandl, Michael W H Coughtrie, Brian Burchell
摘要

The transport of glucuronides across the endoplasmic reticulum membrane is an important step in the overall process of biotransformation, although the mechanism remains unclear and the participating transporters are unidentified. Using a rapid filtration assay in combination with liquid chromatography-mass spectrometry, we measured the transport of a variety of beta-D-glucuronides in rat liver microsomes and investigated the substrate specificity of the participating transporter(s) by inhibition studies. Time-dependent and bi-directional transport of phenolphthalein glucuronide was detected and the kinetic parameters for transport were determined. The K(m) and V(max) values of high affinity transport were 26microM and 3.9nmol/min/mg protein, respectively. Phenolphthalein glucuronide transport was inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and N-ethylmaleimide. Transport inhibition studies revealed competition between three glucuronides: phenolphthalein glucuronide, estradiol 17-glucuronide and naphthol AS-BI glucuronide indicating that they share a common transporter in the endoplasmic reticulum membrane. Their transport was inhibited by phenolphthalein, but was not affected by p-nitrophenyl glucuronide, naphthyl glucuronide or d-glucuronate. Morphine 3-glucuronide transport was not inhibited by any of the latter four compounds or by phenolphthalein glucuronide. This novel experimental approach has produced data consistent with the presence of multiple (at least three) transporters catalyzing the transport of glucuronides through the endoplasmic reticulum membrane. These data also indicate that the size and/or shape of the aglycone rather than the glucuronic acid moiety per se is an important determinant of transporter specificity.

材料
货号
品牌
产品描述

Sigma-Aldrich
苯酚 β-D-葡萄糖醛酸, β-glucuronidase substrate
Sigma-Aldrich
苯酚 β-D-葡萄糖醛酸 钠盐, β-glucuronidase substrate

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。