• 主页
  • 查找结果
  • Disturbance of DNA conformation by the binding of testosterone-based platinum drugs via groove-face and intercalative interactions: a molecular dynamics simulation study.

Disturbance of DNA conformation by the binding of testosterone-based platinum drugs via groove-face and intercalative interactions: a molecular dynamics simulation study.

BMC structural biology (2013-03-23)
Shanshan Cui, Yan Wang, Guangju Chen
摘要

To explore novel platinum-based anticancer agents that are distinct from the structure and interaction mode of the traditional cisplatin by forming the bifunctional intrastrand 1,2 GpG adduct, the monofunctional platinum+DNA adducts with extensive non-covalent interactions had been studied. It was reported that the monofunctional testosterone-based platinum(II) agents present the high anticancer activity. Moreover, it was also found that the testosterone-based platinum agents could cause the DNA helix to undergo significant unwinding and bending over the non-testosterone-based platinum agents. However, the interaction mechanisms of these platinum agents with DNA at the atomic level are not yet clear so far. In the present work, we used molecular dynamics (MD) simulations and DNA conformational dynamics calculations to study the DNA distortion properties of the testosterone-based platinum+DNA, the improved testosterone-based platinum+DNA and the non-testosterone-based platinum+DNA adducts. The results show that the intercalative interaction of the improved flexible testosterone-based platinum agent with DNA molecule could cause larger DNA conformational distortion than the groove-face interaction of the rigid testosterone-based platinum agent with DNA molecule. Further investigations for the non-testosterone-based platinum agent reveal the occurrence of insignificant change of DNA conformation due to the absence of testosterone ligand in such agent. Based on the DNA dynamics analysis, the DNA base motions relating to DNA groove parameter changes and hydrogen bond destruction of DNA base pairs were also discussed in this work. The flexible linker in the improved testosterone-based platinum agent causes an intercalative interaction with DNA in the improved testosterone-based platinum+DNA adduct, which is different from the groove-face interaction caused by a rigid linker in the testosterone-based platinum agent. The present investigations provide useful information of DNA conformation affected by a testosterone-based platinum complex at the atomic level.

材料
货号
品牌
产品描述

Sigma-Aldrich
铂, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.25 mm, 99.9% trace metals basis
Sigma-Aldrich
铂, foil, thickness 0.025 mm, 99.9% trace metals basis
Sigma-Aldrich
铂, gauze, 100 mesh, 99.9% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
铂黑, black, powder, ≤20 μm, ≥99.95% trace metals basis
Sigma-Aldrich
铂, wire, diam. 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
铂, gauze, 52 mesh, 99.9% trace metals basis
Sigma-Aldrich
铂, powder, 99.995% trace metals basis
Sigma-Aldrich
铂, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
铂, foil, thickness 0.05 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, wire, diam. 2.0 mm, 99.9% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.076 mm, ≥99.99% trace metals basis
Sigma-Aldrich
铂, powder, ≤10 μm, 99.9% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.25 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.25 mm, thermocouple grade
Sigma-Aldrich
铂黑, fuel cell grade, ≥99.9% trace metals basis
Sigma-Aldrich
铂, foil, thickness 0.1 mm, 99.9% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.10 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, wire, diam. 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, foil, thickness 0.125-0.135 mm, 99.9% trace metals basis
Sigma-Aldrich
铂, foil, thickness 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, evaporation slug, diam. × L 0.6 cm × 1.2 cm, 99.99% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.127 mm, 99.9% trace metals basis
Sigma-Aldrich
铂黑, low bulk density, ≥99.9% trace metals basis
Sigma-Aldrich
铂, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
铂, powder (coarse), 99.99% trace metals basis
Sigma-Aldrich
铂, foil, thickness 0.05 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铂, foil, thickness 0.127 mm, 99.99% trace metals basis