• 主页
  • 查找结果
  • Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates.

Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates.

Proceedings of the National Academy of Sciences of the United States of America (2014-04-08)
Laura M van Staalduinen, Fern R McSorley, Katharina Schiessl, Jacqueline Séguin, Peter B Wyatt, Friedrich Hammerschmidt, David L Zechel, Zongchao Jia
摘要

The enzymes PhnY and PhnZ comprise an oxidative catabolic pathway that enables marine bacteria to use 2-aminoethylphosphonic acid as a source of inorganic phosphate. PhnZ is notable for catalyzing the oxidative cleavage of a carbon-phosphorus bond using Fe(II) and dioxygen, despite belonging to a large family of hydrolytic enzymes, the HD-phosphohydrolase superfamily. We have determined high-resolution structures of PhnZ bound to its substrate, (R)-2-amino-1-hydroxyethylphosphonate (2.1 Å), and a buffer additive, l-tartrate (1.7 Å). The structures reveal PhnZ to have an active site containing two Fe ions coordinated by four histidines and two aspartates that is strikingly similar to the carbon-carbon bond cleaving enzyme, myo-inositol-oxygenase. The exception is Y24, which forms a transient ligand interaction at the dioxygen binding site of Fe2. Site-directed mutagenesis and kinetic analysis with substrate analogs revealed the roles of key active site residues. A fifth histidine that is conserved in the PhnZ subclade, H62, specifically interacts with the substrate 1-hydroxyl. The structures also revealed that Y24 and E27 mediate a unique induced-fit mechanism whereby E27 specifically recognizes the 2-amino group of the bound substrate and toggles the release of Y24 from the active site, thereby creating space for molecular oxygen to bind to Fe2. Structural comparisons of PhnZ reveal an evolutionary connection between Fe(II)-dependent hydrolysis of phosphate esters and oxidative carbon-phosphorus or carbon-carbon bond cleavage, thus uniting the diverse chemistries that are found in the HD superfamily.

材料
货号
品牌
产品描述

Sigma-Aldrich
铁, ≥99%, reduced, powder (fine)
Sigma-Aldrich
铁, powder, −325 mesh, 97%
Sigma-Aldrich
羰基铁, ≥97% Fe basis
Sigma-Aldrich
铁, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, puriss. p.a., carbonyl-Iron powder, low in magnesium and manganese compounds, ≥99.5% (RT)
Sigma-Aldrich
铁, flakes, ≥99.99% trace metals basis
Sigma-Aldrich
铁, nanopowder, 35-45 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
铁, granular, 10-40 mesh, >99.99% trace metals basis
Sigma-Aldrich
铁, chips, 99.98% trace metals basis
Sigma-Aldrich
铁, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, foil, thickness 0.25 mm, ≥99.99% trace metals basis
Sigma-Aldrich
铁, wire, diam. 1.0 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, carbon coated magnetic, nanopowder, 25 nm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
铁, wire, diam. 0.5 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, rod, diam. 6.3 mm, 99.98% trace metals basis
铁, IRMM®, certified reference material, 0.5 mm wire
铁, foil, 300x300mm, thickness 0.1mm, hard, 99.5%
铁, foil, 0.2m coil, thickness 0.5mm, coil width 49mm, armco« soft ingot 99.8+%
铁, wire reel, 1m, diameter 0.025mm, as drawn, 99.99+%
铁, wire reel, 20m, diameter 0.125mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.01mm, 99.85%
铁, foil, 10mm disks, thickness 0.01mm, 99.99+%
铁, foil, 10mm disks, thickness 0.020mm, 99.85%
铁, foil, 10mm disks, thickness 0.025mm, as rolled, 99.99+%
铁, foil, 10mm disks, thickness 0.025mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.038mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.05mm, as rolled, 99.99+%
铁, foil, 10mm disks, thickness 0.05mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.075mm, as rolled, 99.99+%
铁, foil, 10mm disks, thickness 0.075mm, hard, 99.5%

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。