• 主页
  • 查找结果
  • High LET (56)Fe ion irradiation induces tissue-specific changes in DNA methylation in the mouse.

High LET (56)Fe ion irradiation induces tissue-specific changes in DNA methylation in the mouse.

Environmental and molecular mutagenesis (2014-04-12)
Florence Lima, Dacheng Ding, Wilfried Goetz, Austin J Yang, Janet E Baulch
摘要

DNA methylation is an epigenetic mechanism that drives phenotype and that can be altered by environmental exposures including radiation. The majority of human radiation exposures occur in a relatively low dose range; however, the biological response to low dose radiation is poorly understood. Based on previous observations, we hypothesized that in vivo changes in DNA methylation would be observed in mice following exposure to doses of high linear energy transfer (LET) (56) Fe ion radiation between 10 and 100 cGy. We evaluated the DNA methylation status of genes for which expression can be regulated by methylation and that play significant roles in radiation responses or carcinogenic processes including apoptosis, metastasis, cell cycle regulation, and DNA repair (DAPK1, EVL, 14.3.3, p16, MGMT, and IGFBP3). We also evaluated DNA methylation of repeat elements in the genome that are typically highly methylated. No changes in liver DNA methylation were observed. Although no change in DNA methylation was observed for the repeat elements in the lungs of these same mice, significant changes were observed for the genes of interest as a direct effect and a delayed effect of irradiation 1, 7, 30, and 120 days post exposure. At delayed times, differences in methylation profiles among genes were observed. DNA methylation profiles also significantly differed based on dose, with the lowest dose frequently affecting the largest change. The results of this study are the first to demonstrate in vivo high LET radiation-induced changes in DNA methylation that are tissue and locus specific, and dose and time dependent.

材料
货号
品牌
产品描述

Sigma-Aldrich
铁, ≥99%, reduced, powder (fine)
Sigma-Aldrich
铁, powder, −325 mesh, 97%
Sigma-Aldrich
羰基铁, ≥97% Fe basis
Sigma-Aldrich
铁, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, puriss. p.a., carbonyl-Iron powder, low in magnesium and manganese compounds, ≥99.5% (RT)
Sigma-Aldrich
铁, flakes, ≥99.99% trace metals basis
Sigma-Aldrich
铁, nanopowder, 35-45 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
铁, granular, 10-40 mesh, >99.99% trace metals basis
Sigma-Aldrich
铁, chips, 99.98% trace metals basis
Sigma-Aldrich
铁, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, foil, thickness 0.25 mm, ≥99.99% trace metals basis
Sigma-Aldrich
铁, wire, diam. 1.0 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, carbon coated magnetic, nanopowder, 25 nm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
铁, wire, diam. 0.5 mm, ≥99.9% trace metals basis
Sigma-Aldrich
铁, rod, diam. 6.3 mm, 99.98% trace metals basis
铁, IRMM®, certified reference material, 0.5 mm wire
铁, foil, 300x300mm, thickness 0.1mm, hard, 99.5%
铁, foil, 0.2m coil, thickness 0.5mm, coil width 49mm, armco« soft ingot 99.8+%
铁, wire reel, 1m, diameter 0.025mm, as drawn, 99.99+%
铁, wire reel, 20m, diameter 0.125mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.01mm, 99.85%
铁, foil, 10mm disks, thickness 0.01mm, 99.99+%
铁, foil, 10mm disks, thickness 0.020mm, 99.85%
铁, foil, 10mm disks, thickness 0.025mm, as rolled, 99.99+%
铁, foil, 10mm disks, thickness 0.025mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.038mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.05mm, as rolled, 99.99+%
铁, foil, 10mm disks, thickness 0.05mm, hard, 99.5%
铁, foil, 10mm disks, thickness 0.075mm, as rolled, 99.99+%
铁, foil, 10mm disks, thickness 0.075mm, hard, 99.5%

社交媒体

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

科研、开发、生产。

作为生命科学行业的全球领先供应商,我们致力于为科研、生物技术开发和生产,以及制药药物疗法开发和生产提供各类解决方案和服务。

© 2021年版权归德国达姆施塔特默克集团(Merck KGaA)及/或其附属公司所有。版权所有。

未经许可,严禁复制本网站上的任何资料。