• 主页
  • 查找结果
  • Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

The journal of adhesive dentistry (2015-07-15)
Ryosuke Fushiki, Futoshi Komine, Junichi Honda, Shingo Kamio, Markus B Blatz, Hideo Matsumura
摘要

This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

材料
货号
品牌
产品描述

Sigma-Aldrich
氧化锆 (IV), powder, 5 μm, 99% trace metals basis
Sigma-Aldrich
氧化锆 (IV), nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
氧化锆(IV), nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O
Sigma-Aldrich
氧化锆 (IV), 99.99% trace metals basis (purity excludes ~2% HfO2)
Sigma-Aldrich
氧化锆(IV), nanoparticles, dispersion, <100 nm particle size (BET), 10 wt. % in H2O