• 主页
  • 查找结果
  • Organic cation transporter 3 contributes to norepinephrine uptake into perivascular adipose tissue.

Organic cation transporter 3 contributes to norepinephrine uptake into perivascular adipose tissue.

American journal of physiology. Heart and circulatory physiology (2015-10-04)
Nadia Ayala-Lopez, William F Jackson, Robert Burnett, James N Wilson, Janice M Thompson, Stephanie W Watts
摘要

Perivascular adipose tissue (PVAT) reduces vasoconstriction to norepinephrine (NE). A mechanism by which PVAT could function to reduce vascular contraction is by decreasing the amount of NE to which the vessel is exposed. PVATs from male Sprague-Dawley rats were used to test the hypothesis that PVAT has a NE uptake mechanism. NE was detected by HPLC in mesenteric PVAT and isolated adipocytes. Uptake of NE (10 μM) in mesenteric PVAT was reduced by the NE transporter (NET) inhibitor nisoxetine (1 μM, 73.68 ± 7.62%, all values reported as percentages of vehicle), the 5-hydroxytryptamine transporter (SERT) inhibitor citalopram (100 nM) with the organic cation transporter 3 (OCT3) inhibitor corticosterone (100 μM, 56.18 ± 5.21%), and the NET inhibitor desipramine (10 μM) with corticosterone (100 μM, 61.18 ± 6.82%). Aortic PVAT NE uptake was reduced by corticosterone (100 μM, 53.01 ± 10.96%). Confocal imaging of mesenteric PVAT stained with 4-[4-(dimethylamino)-styrl]-N-methylpyridinium iodide (ASP(+)), a fluorescent substrate of cationic transporters, detected ASP(+) uptake into adipocytes. ASP(+) (2 μM) uptake was reduced by citalopram (100 nM, 66.68 ± 6.43%), corticosterone (100 μM, 43.49 ± 10.17%), nisoxetine (100 nM, 84.12 ± 4.24%), citalopram with corticosterone (100 nM and 100 μM, respectively, 35.75 ± 4.21%), and desipramine with corticosterone (10 and 100 μM, respectively, 50.47 ± 5.78%). NET protein was not detected in mesenteric PVAT adipocytes. Expression of Slc22a3 (OCT3 gene) mRNA and protein in PVAT adipocytes was detected by RT-PCR and immunocytochemistry, respectively. These end points support the presence of a transporter-mediated NE uptake system within PVAT with a potential mediator being OCT3.

材料
货号
品牌
产品描述

Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
氢氧化钠, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
氢氧化钠, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
氢氧化钠 溶液, 50% in H2O
Sigma-Aldrich
氢氧化钠, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
氢氧化钠 溶液, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
氢氧化钠 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
BCA(Bicinchoninic Acid)蛋白定量试剂盒, for 200-1000 μg/ml protein
Sigma-Aldrich
胶原酶 来源于溶组织梭菌, Type IA, 0.5-5.0 FALGPA units/mg solid, ≥125 CDU/mg solid, For general use
Sigma-Aldrich
丙酮, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
氢氧化钠, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
丙酮, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
单克隆抗 β-肌动蛋白-过氧化物酶 小鼠抗, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, powder
Sigma-Aldrich
氢氧化钠 溶液, 5.0 M
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
氢氧化钠, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
丙酮, suitable for HPLC, ≥99.9%
Sigma-Aldrich
丙酮, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
丙酮, histological grade, ≥99.5%
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
丙酮, natural, ≥97%
Sigma-Aldrich
氢氧化钠, beads, 20-40 mesh, reagent grade, 97%
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, flakes
Supelco
丙酮 溶液, certified reference material, 2000 μg/mL in methanol: water (9:1)
Sigma-Aldrich
氢氧化钠, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
氢氧化钠, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
丙酮, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
氢氧化钠 溶液, purum, ≥32%