Skip to Content
Merck

Environmental assessment of the alkanolamines.

Reviews of environmental contamination and toxicology (1997-01-01)
J W Davis, C L Carpenter
ABSTRACT

This review provides a summary of current information available on the environmental fate and aquatic toxicology of the alkanolamines. Because these materials are widely used, there is a need to understand their fate and effects in the environment. This assessment was confined to information regarding selected physical properties of the alkanolamines as well as their potential for degradation in the atmosphere, soil, surface water, and groundwater. In addition, their relevant aquatic toxicological information and bioconcentration potential were evaluated. In general, the alkanolamines have high water solubilities and low to moderate vapor pressures. Some are solids whereas others are liquids at room temperature. Aqueous solutions of the alkanolamines are basic, with the pKas decreasing with increased alkyl substitution. Predictions of the environmental distribution of these compounds, based on a unit world model of Mackay and Paterson, suggested that alkanolamines would partition primarily into the aqueous compartment at equilibrium, with the remainder distributed to the atmosphere. Only a very small fraction of these materials is expected to sorb to soil or sediments. However, adsorption mechanisms other than partitioning into the soil organic layer were not considered in this model. Since polar compounds may sorb to soil by alternate mechanisms, this model may underestimate the true adsorption potential and subsequent environmental distribution of the alkanolamines. Future work with these compounds should focus on other types of adsorption mechanisms that could impact the environmental distribution of the alkanolamines. Although only small amount of the alkanolamines are expected to partition to the atmosphere, they are expected to be removed by reactions with photochemically generated hydroxyl radicals. They may also be removed from the atmosphere by precipitation, due to their high water solubility. Because of the relatively low levels expected to be present in the atmosphere and the relatively short half-lives, the alkanolamines are not expected to adversely impact air quality. Alkanolamines have also been shown to be highly susceptible to biodegradation and are not expected to persist in the environment. Results from numerous studies have shown that these materials undergo rapid biodegradation in soil, surface waters, and wastewater treatment plants. Degradation rates for these compounds may vary, with half-lives routinely in the range of 1 d to 2 wk, depending on the length of acclimation period and other environmental factors. The relatively low bioconcentration factor (BCF) values reported for the alkanolamines indicate that they would not be expected to bioconcentrate in aquatic organisms. Available data on the toxicity of the alkanolamines to aquatic organisms suggest low toxicity to the majority of the species studied. Based on the facts that alkanolamines exhibit low aquatic toxicity, are shown to biodegrade in a wide range of environments, and exhibit no tendency to bioaccumulate, the routine manufacturing, use, and disposal of these materials are not expected to adversely impact the environment. With increased emphasis by consumers and regulatory agencies for industry to develop products that are "environmentally friendly," these properties of the alkanolamines make them an attractive choice for a wide range of applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Amino-2-propanol, 93%