Skip to Content
Merck
  • Utilization of by-products derived from bioethanol production process for cost-effective production of lactic acid.

Utilization of by-products derived from bioethanol production process for cost-effective production of lactic acid.

Journal of industrial microbiology & biotechnology (2014-08-29)
Se-Kwon Moon, Young-Jung Wee, Gi-Wook Choi
ABSTRACT

The by-products of bioethanol production such as thin stillage (TS) and condensed distillers solubles (CDS) were used as a potential nitrogen source for economical production of lactic acid. The effect of those by-products and their concentrations on lactic acid fermentation were investigated using Lactobacillus paracasei CHB2121. Approximately, 6.7 g/L of yeast extract at a carbon source to nitrogen source ratio of 15 was required to produce 90 g/L of lactic acid in the medium containing 100 g/L of glucose. Batch fermentation of TS medium resulted in 90 g/L of lactic acid after 48 h, and the medium containing 10 % CDS resulted in 95 g/L of lactic acid after 44 h. Therefore, TS and CDS could be considered as potential alternative fermentation medium for the economical production of lactic acid. Furthermore, lactic acid fermentation was performed using only cassava and CDS for commercial production of lactic acid. The volumetric productivity of lactic acid [2.94 g/(L·h)] was 37 % higher than the productivity obtained from the medium with glucose and CDS.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lactic acid, natural, ≥85%
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.003% water
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.005% water
Sigma-Aldrich
Lactic acid, meets USP testing specifications
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Supelco
Lactic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol-500, 500 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-20 (10 ampules/kit), 20 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-25, 25 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-400 (10 ampules/kit), 400 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Lactic acid, 88%, FCC
Supelco
Ethanol Calibration Kit, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethanol, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
Lactic acid solution, ACS reagent, ≥85%
Sigma-Aldrich
DL-Lactic acid, ~90% (T)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)