Skip to Content
Merck
  • Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

Journal of proteome research (2014-08-20)
David R Barnidge, Surendra Dasari, Marina Ramirez-Alvarado, Adrian Fontan, Maria A V Willrich, Renee C Tschumper, Diane F Jelinek, Melissa R Snyder, Angela Dispenzieri, Jerry A Katzmann, David L Murray
ABSTRACT

We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, Molecular Biology, ~1 M in H2O
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Ammonium bicarbonate, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ultrapure Acetonitrile
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Ammonium bicarbonate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%