Passa al contenuto
Merck
  • Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2.

Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2.

Stem cells (Dayton, Ohio) (2014-07-06)
Nick van Gastel, Steve Stegen, Ingrid Stockmans, Karen Moermans, Jan Schrooten, Daniel Graf, Frank P Luyten, Geert Carmeliet
ABSTRACT

The preservation of the bone-forming potential of skeletal progenitor cells during their ex vivo expansion remains one of the major challenges for cell-based bone regeneration strategies. We report that expansion of murine periosteal cells in the presence of FGF2, a signal present during the early stages of fracture healing, is necessary and sufficient to maintain their ability to organize in vivo into a cartilage template which gives rise to mature bone. Implantation of FGF2-primed cells in a large bone defect in mice resulted in complete healing, demonstrating the feasibility of using this approach for bone tissue engineering purposes. Mechanistically, the enhanced endochondral ossification potential of FGF2-expanded periosteal cells is predominantly driven by an increased production of BMP2 and is additionally linked to an improved preservation of skeletal progenitor cells in the cultures. This characteristic is unique for periosteal cells, as FGF2-primed bone marrow stromal cells formed significantly less bone and progressed exclusively through the intramembranous pathway, revealing essential differences between both cell pools. Taken together, our findings provide insight in the molecular regulation of fracture repair by identifying a unique interaction between periosteal cells and FGF2. These insights may promote the development of cell-based therapeutic strategies for bone regeneration which are independent of the in vivo use of growth factors, thus limiting undesired side effects.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acido L-ascorbico, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Fenil metansolfonile fluoruro, ≥98.5% (GC)
Sigma-Aldrich
Anti-β-actina monoclonale, clone AC-15, ascites fluid
Sigma-Aldrich
Acido L-ascorbico, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Acido L-ascorbico, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Acido L-ascorbico, 99%
Sigma-Aldrich
Acido L-ascorbico, reagent grade, crystalline
Supelco
Acido L-ascorbico, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Acido ascorbico, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Fenil metansolfonile fluoruro, ≥99.0% (T)
Sigma-Aldrich
Acido L-ascorbico, ACS reagent, ≥99%
Supelco
Acido L-ascorbico, analytical standard
Sigma-Aldrich
Acido L-ascorbico, meets USP testing specifications
Sigma-Aldrich
Acido L-ascorbico, reagent grade
Sigma-Aldrich
Acido L-ascorbico, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Acido L-ascorbico, FCC, FG
Sigma-Aldrich
Acido L-ascorbico, BioUltra, ≥99.5% (RT)
Acido L-ascorbico, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Acido L-ascorbico, puriss. p.a., ≥99.0% (RT)
Supelco
Acido L-ascorbico, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Acido L-ascorbico, tested according to Ph. Eur.
Sigma-Aldrich
FGF-2 human, recombinant, expressed in insect cells, ≥85% (SDS-PAGE)