Skip to Content
Merck
All Photos(2)

Documents

Safety Information

482552

Sigma-Aldrich

Polypyrrole

greener alternative

doped, 5 wt % dispersion in H2O, conductivity >0.005 S/cm (dried cast film)

Sign Into View Organizational & Contract Pricing

Synonym(s):
PPy
CAS Number:
MDL number:
UNSPSC Code:
12352103
NACRES:
NA.23

Quality Level

contains

proprietary organic acids as dopant

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

5 wt % dispersion in H2O

greener alternative category

InChI

1S/C4H5N/c1-2-4-5-3-1/h1-5H

InChI key

KAESVJOAVNADME-UHFFFAOYSA-N

General description

Polypyrrole (PPy) is a conductive and highly stable polymer, doped with proprietary organic acids. It may be prepared by standard electrochemical technique. PPy may also be prepared by reacting β-napthalene sulfonic acid (NSA) and ammonium peroxo-disulphate in aqueous medium. The charges on the surfaces can be easily modified by doping the polymer during its synthesis.Solubility and conductivity measurements of PPy doped with camphor sulfonic and dodecyl benzene sulfonic acid has been reported.
Polypyrrole(PPy) is a π-conjugated conductive polymer that can be electrochemically synthesized and deposited on a variety of surfaces. The deposited PPy can be used in a wide range of sensor based applications due to the following properties:
  • Ion exchange capacity.
  • Electrochromic effects.
  • Redox activity.
  • Corrosion resistant.
  • Catalytic activity.

We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product enables flexible high-performance energy conversion and storage and thus has been enhanced for energy efficiency. Click here for more information.

Application

Conducting polymers may be used in electronics, chemical sensors.
PPy can be used in the development of devices including:
  • conductive sensors for quality monitoring
  • blended with nanotubes for supercapacitors
  • nanowire actuators
  • biosensors for drug delivery
  • CO2 absorption materials

Packaging

Packaged in poly bottles

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

482552-BULK:
482552-VAR:
482552-100ML:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Electrochemical sensors based on conducting polymer?polypyrrole.
Ramanavicius A, et al.
Electrochimica Acta, 51(27), 6025-6037 (2006)
Polypyrrole nanowire actuators.
Berdichevsky Y and Lo Y
Advanced Materials, 18(1), 122-125 (2006)
Conducting polymers in electronic chemical sensors
Janata J and Josowicz M
Nature Materials, 2, 19-24 (2003)
Biosensing and drug delivery by polypyrrole.
Geetha S, et al.
Analytica Chimica Acta, 568(1-2), 119-125 (2006)
N-doped polypyrrole-based porous carbons for CO2 capture.
Sevilla M, et al.
Advances in Functional Materials, 21(14), 2781-2787 (2011)

Articles

The application of conducting polymers at the interface with biology is an exciting new trend in organic electronics research.

Self-healing soft electronic materials offer potential cost savings and reduced electronic waste.

While dye sensitization as the basis for color photography has been accepted for a very long time,1 attempts to use this principle for the conversion of solar light to electricity generally had resulted only in very low photocurrents, below 100 nA/cm

Research focuses on sustainable and cost-effective power generation systems to meet the growing demand for environmentally friendly energy sources.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service