Merck
  • Home
  • Search Results
  • CO-Releasing Molecule-2 Induces Nrf2/ARE-Dependent Heme Oxygenase-1 Expression Suppressing TNF-α-Induced Pulmonary Inflammation.

CO-Releasing Molecule-2 Induces Nrf2/ARE-Dependent Heme Oxygenase-1 Expression Suppressing TNF-α-Induced Pulmonary Inflammation.

Journal of clinical medicine (2019-04-03)
Chih-Chung Lin, Li-Der Hsiao, Rou-Ling Cho, Chuen-Mao Yang
ABSTRACT

The upregulation of heme oxygenase-1 (HO-1) by the carbon monoxide-releasing molecule (CORM)-2 may be mediated through the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [Nox] and reactive oxygen species (ROS) generation, which could provide cytoprotection against various cellular injuries. However, the detailed mechanisms of CORM-2-induced HO-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain largely unknown. Therefore, we dissected the mechanisms underlying CORM-2-induced HO-1 expression in HPAEpiCs. We found that the administration of mice with CORM-2 attenuated the tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule-1 (ICAM-1) expression and leukocyte count as revealed by immunohistochemical staining, western blot, real-time polymerase chain reaction (PCR), and cell count. Furthermore, TNF-α-induced ICAM-1 expression associated with monocyte adhesion to HPAEpiCs was attenuated by infection with adenovirus (adv)-HO-1 or incubation with CORM-2. These inhibitory effects of HO-1 were reversed by pretreatment with hemoglobin (Hb). Moreover, CORM-2-induced HO-1 expression was mediated via the phosphorylation of p47 phox , c-Src, epidermal growth factor receptor (EGFR), Akt, and NF-E2-related factor 2 (Nrf2), which were inhibited by their pharmacological inhibitors, including diphenyleneiodonium (DPI) or apocynin (APO), ROS [N-acetyl-L-cysteine (NAC)], PP1, AG1478, PI3K (LY294002), or Akt (SH-5), and small interfering RNAs (siRNAs). CORM-2-enhanced Nrf2 expression, and anti-oxidant response element (ARE) promoter activity was also inhibited by these pharmacological inhibitors. The interaction between Nrf2 and AREs was confirmed with a chromatin immunoprecipitation (ChIP) assay. These findings suggest that CORM-2 increases the formation of the Nrf2 and AREs complex and binds with ARE-binding sites via Src, EGFR, and PI3K/Akt, which further induces HO-1 expression in HPAEpiCs. Thus, the HO-1/CO system might suppress TNF-α-mediated inflammatory responses and exert a potential therapeutic strategy in pulmonary diseases.