Merck
  • Home
  • Search Results
  • Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis.

Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis.

Redox biology (2017-09-10)
Shashank Masaldan, Sharnel A S Clatworthy, Cristina Gamell, Peter M Meggyesy, Antonia-Tonia Rigopoulos, Sue Haupt, Ygal Haupt, Delphine Denoyer, Paul A Adlard, Ashley I Bush, Michael A Cater
ABSTRACT

Cellular senescence is characterised by the irreversible arrest of proliferation, a pro-inflammatory secretory phenotype and evasion of programmed cell death mechanisms. We report that senescence alters cellular iron acquisition and storage and also impedes iron-mediated cell death pathways. Senescent cells, regardless of stimuli (irradiation, replicative or oncogenic), accumulate vast amounts of intracellular iron (up to 30-fold) with concomitant changes in the levels of iron homeostasis proteins. For instance, ferritin (iron storage) levels provided a robust biomarker of cellular senescence, for associated iron accumulation and for resistance to iron-induced toxicity. Cellular senescence preceded iron accumulation and was not perturbed by sustained iron chelation (deferiprone). Iron accumulation in senescent cells was driven by impaired ferritinophagy, a lysosomal process that promotes ferritin degradation and ferroptosis. Lysosomal dysfunction in senescent cells was confirmed through several markers, including the build-up of microtubule-associated protein light chain 3 (LC3-II) in autophagosomes. Impaired ferritin degradation explains the iron accumulation phenotype of senescent cells, whereby iron is effectively trapped in ferritin creating a perceived cellular deficiency. Accordingly, senescent cells were highly resistant to ferroptosis. Promoting ferritin degradation by using the autophagy activator rapamycin averted the iron accumulation phenotype of senescent cells, preventing the increase of TfR1, ferritin and intracellular iron, but failed to re-sensitize these cells to ferroptosis. Finally, the enrichment of senescent cells in mouse ageing hepatic tissue was found to accompany iron accumulation, an elevation in ferritin and mirrored our observations using cultured senescent cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
モノクロナール抗β-アクチン マウス宿主抗体, clone AC-15, ascites fluid
Sigma-Aldrich
クエン酸鉄(III)アンモニウム, reagent grade, powder
Sigma-Aldrich
抗LC3B ウサギ宿主抗体, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
抗ヤギIgG (全分子)-ペルオキシダーゼ ウサギ宿主抗体, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-SV40 Large T Antigen Antibody, clone PAb416, clone PAb416, from mouse