Skip to Content
Merck
  • Multiple UDP-glucuronosyltransferases in human liver microsomes glucuronidate both R- and S-7-hydroxywarfarin into two metabolites.

Multiple UDP-glucuronosyltransferases in human liver microsomes glucuronidate both R- and S-7-hydroxywarfarin into two metabolites.

Archives of biochemistry and biophysics (2014-12-03)
C Preston Pugh, Dakota L Pouncey, Jessica H Hartman, Robert Nshimiyimana, Linda P Desrochers, Thomas E Goodwin, Gunnar Boysen, Grover P Miller
ABSTRACT

The widely used anticoagulant Coumadin (R/S-warfarin) undergoes oxidation by cytochromes P450 into hydroxywarfarins that subsequently become conjugated for excretion in urine. Hydroxywarfarins may modulate warfarin metabolism transcriptionally or through direct inhibition of cytochromes P450 and thus, UGT action toward hydroxywarfarin elimination may impact levels of the parent drugs and patient responses. Nevertheless, relatively little is known about conjugation by UDP-glucuronosyltransferases in warfarin metabolism. Herein, we identified probable conjugation sites, kinetic mechanisms and hepatic UGT isoforms involved in microsomal glucuronidation of R- and S-7-hydroxywarfarin. Both compounds underwent glucuronidation at C4 and C7 hydroxyl groups based on elution properties and spectral characteristics. Their formation demonstrated regio- and enantioselectivity by UGTs and resulted in either Michaelis-Menten or substrate inhibition kinetics. Glucuronidation at the C7 hydroxyl group occurred more readily than at the C4 group, and the reaction was overall more efficient for R-7-hydroxywarfarin due to higher affinity and rates of turnover. The use of these mechanisms and parameters to model in vivo clearance demonstrated that contributions of substrate inhibition would lead to underestimation of metabolic clearance than that predicted by Michaelis-Menten kinetics. Lastly, these processes were driven by multiple UGTs indicating redundancy in glucuronidation pathways and ultimately metabolic clearance of R- and S-7-hydroxywarfarin.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Perchloric acid, puriss. p.a., ACS reagent, packed in coated, shock- and leak-protected glass bottle, ≥60% (T)
Supelco
Ethyl Acetate, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl acetate, biotech. grade, ≥99.8%
Sigma-Aldrich
Perchloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 70.0-72.0%
Sigma-Aldrich
Ethyl acetate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Perchloric acid, ACS reagent, 60%
Sigma-Aldrich
Perchloric acid, ACS reagent, 70%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethyl acetate, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99.5% (GC)
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Ethyl acetate, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Supelco
Perchloric acid, 0.01 M HClO4 in water (0.01N), eluent for IC
Millipore
Bifido Selective Supplement B, suitable for microbiology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Perchloric acid, 70%, 99.999% trace metals basis
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG