Skip to Content
Merck
  • Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis.

Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis.

Journal of chromatography. A (2015-06-17)
Xiaoyu Xie, Liang Chen, Xiaoyan Pan, Sicen Wang
ABSTRACT

Magnetic molecularly imprinted polymers (MMIPs) have become a hotspot owing to the dual functions of target recognition and magnetic separation. In this study, the MMIPs were obtained by the surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using Sudan I as the template. The resultant MMIPs were characterized by transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and X-ray diffraction. Benefiting from the controlled/living property of the RAFT strategy, the uniform MIP layer was successfully grafted on the surface of RAFT agent-modified Fe3O4@SiO2 nanoparticles, favoring the fast mass transfer and rapid binding kinetics. The developed MMIPs were used as the solid-phase extraction sorbents to selectively extract four Sudan dyes (Sudan I, II, III, and IV) from chili powder samples. The recoveries of the spiked samples in chili powder samples ranged from 74.1 to 93.3% with RSD lower than 6.4% and the relative standard uncertainty lower than 0.029. This work provided a good platform for the extraction and removal of Sudan dyes in complicated matrixes and demonstrated a bright future for the application of the well-constructed MMIPs in the field of solid-phase extraction.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol solution, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Acrylamide solution, 40%, suitable for electrophoresis, sterile-filtered
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Methyl acetoacetate, Arxada quality, ≥99% (GC)
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
Methacrylic acid, contains 250 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Methyl acetoacetate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Carbon disulfide, anhydrous, ≥99%
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Tetraethyl orthosilicate, ≥99.0% (GC)
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), 98%
Sigma-Aldrich
Tetraethyl orthosilicate, 99.999% trace metals basis
Sigma-Aldrich
Tetraethyl orthosilicate, reagent grade, 98%
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99% (HPLC), powder
Sigma-Aldrich
Acrylamide, Molecular Biology, ≥99% (HPLC)
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Tetraethyl orthosilicate, packaged for use in deposition systems
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Triethylamine, purum, ≥99% (GC)
Supelco
Tetrahydrofuran, HPLC grade, ≥99.9%, inhibitor-free
Sigma-Aldrich
Triethylamine, for amino acid analysis, ≥99.5% (GC)