Merck
All Photos(3)

Documents

457620

Sigma-Aldrich

Polyglycolide

inherent viscosity 1.4dL/g

Sign Into View Organizational & Contract Pricing

Synonym(s):
PGA, Poly(glycolic acid)
Linear Formula:
(C2H4O3)n
CAS Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

form

solid

degradation timeframe

6-12 months

inherent viscosity

1.1-1.7 dL/g, 0.1 % (w/v) in hexafluoroisopropanol(25 °C)

transition temp

Tm 220-230 °C

solubility

hexafluoroisopropanol: soluble

density

1.53 g/mL at 25 °C (lit.)

storage temp.

2-8°C

SMILES string

OCC(O)=O

InChI

1S/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5)

InChI key

AEMRFAOFKBGASW-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
323667430471764817
Polyglycolide inherent viscosity 1.4dL/g

457620

Polyglycolide

Poly(acrylic acid)

323667

Poly(acrylic acid)

Poly(D,L-lactide-co-glycolide) ester terminated, Mw 50,000-75,000

430471

Poly(D,L-lactide-co-glycolide)

form

solid

form

-

form

amorphous

form

semisolid

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

density

1.53 g/mL at 25 °C (lit.)

density

-

density

-

density

-

degradation timeframe

6-12 months

degradation timeframe

-

degradation timeframe

<6 months

degradation timeframe

2-3 weeks

inherent viscosity

1.1-1.7 dL/g, 0.1 % (w/v) in hexafluoroisopropanol(25 °C)

inherent viscosity

-

inherent viscosity

-

inherent viscosity

-

General description

Biodegradable and biocompatible PGA could be potentially useful for bone regeneration. High molecular weight polyglycolide (PGA) can be prepared by ring opening polymerization of diglycolide in the presence of diphenyl bismuth bromide.

Application

Polyglycolide (PGA) along with polylactide may be used to prepare a biodegradable copolymer to be used as implantations. Fabrication of biopolymer/carbon nanotube composite has been reported using PGA fiber as one of the constituents of the composite. Modified porous PGA scaffolds has been fabricated.
medical device

Physical properties

Biodegradable polymer

Preparation Note

To achieve solubility in hexafluoroisopropanol, melt crystalline product and quench with liquid nitrogen to change material to amorphous form.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 4

1 of 4

Effect of dsDNA wrapped single-walled carbon nanotubes on the thermal and mechanical properties of polycaprolactone and polyglycolide fiber blend composites
Spearman SS
Polymer, 56(15), 476-481 (2015)
Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA)
Hollinger JO
Journal of Biomedical Materials Research Part A, 17(1) (1983)
Diopside modified porous polyglycolide scaffolds with improved properties
Feng P, et al.
Royal Society of Chemistry Advances, 5, 54822-54829 (2015)
Fast Synthesis of High-Molecular-Weight Polyglycolide Using Diphenyl Bismuth Bromide as Catalyst
Lu Y, et al.
Macromolecular Chemistry and Physics, 216(4), 395-399 (2015)
Andrew K Capulli et al.
Biomaterials, 133, 229-241 (2017-04-27)
Tissue engineered scaffolds have emerged as a promising solution for heart valve replacement because of their potential for regeneration. However, traditional heart valve tissue engineering has relied on resource-intensive, cell-based manufacturing, which increases cost and hinders clinical translation. To overcome

Articles

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

Immunosuppressive tumor-associated myeloid cells (TAMC) are responsible for glioblastoma (GBM) resistance to immunotherapies and existing standard of care treatments. This mini-review highlights recent progress in implementing nanotechnology in advancing TAMC-targeted therapies for GBM.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service