Use of longer sized screws is a salvage method for broken pedicles in osteoporotic vertebrae.

Scientific reports (2020-06-28)
Ming-Kai Hsieh, Mu-Yi Liu, Jin-Kai Chen, Tsung-Ting Tsai, Po-Liang Lai, Chi-Chien Niu, Ching-Lung Tai
RESUMEN

Screw loosening due to broken pedicles is a common complication resulting from the insertion of screws either with inadequate diameters or into an osteoporotic pedicle. In this novel in vitro study, we tried to clarify the contribution of the pedicle to screw fixation and subsequent salvage strategies using longer or larger-diameter screws in broken pedicles. Sixty L4 fresh-frozen lumbar vertebrae harvested from mature pigs were designed as the normal-density group (n = 30) and decalcified as the osteoporosis group (n = 30). Three modalities were randomly assigned as intact pedicle (n = 30), semi-pedicle (n = 15), and non-pedicle (n = 15) in each group. Three sizes of polyaxial screws (diameter × length of 6.0 mm × 45 mm, 6.0 mm × 50 mm, and 6.5 mm × 45 mm) over five trials were used in each modality. The associations between bone density, pedicle modality and screw pullout strength were analyzed. After decalcification for 4 weeks, the area bone mineral density decreased to approximately 56% (p < 0.05) of the normal-density group, which was assigned as the osteoporosis group. An appropriate screw trajectory and insertional depth were confirmed using X-ray imaging prior to pullout testing in both groups. The pullout forces of larger-diameter screws (6.5 mm × 45 mm) and longer screws (6.0 mm × 50 mm) were significantly higher (p < 0.05) in the semi- and non-pedicle modalities in the normal-density group, whereas only longer screws (6.0 mm × 50 mm) had a significantly higher (p < 0.05) pullout force in the non-pedicle modalities in the osteoporosis group. The pedicle plays an important role in both the normal bone density group and the osteoporosis group, as revealed by analyzing the pullout force percentage contributed by the pedicle. Use of a longer screw would be a way to salvage a broken pedicle of osteoporotic vertebra.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt dihydrate, suitable for electrophoresis, for molecular biology, 99.0-101.0% (titration)
Sigma-Aldrich
Formalin solution, neutral buffered, 10%, histological tissue fixative