• Inicio
  • Resultados de la búsqueda
  • Flavin radicals, conformational sampling and robust design principles in interprotein electron transfer: the trimethylamine dehydrogenase-electron-transferring flavoprotein complex.

Flavin radicals, conformational sampling and robust design principles in interprotein electron transfer: the trimethylamine dehydrogenase-electron-transferring flavoprotein complex.

Biochemical Society symposium (2005-03-22)
David Leys, Jaswir Basran, François Talfournier, Kamaldeep K Chohan, Andrew W Munro, Michael J Sutcliffe, Nigel S Scrutton
RESUMEN

TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Trimethylamine, anhydrous, ≥99%
Sigma-Aldrich
Trimethylamine solution, 43.0-49.0% in H2O (T)
Sigma-Aldrich
Trimethylamine solution, 31-35 wt. % in ethanol, 4.2 M, contains toluene as stabilizer
Sigma-Aldrich
Trimethylamine solution, 25 wt. % in H2O
Sigma-Aldrich
Trimethylamine solution, 25 wt. % in propylene glycol