Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis.

The American journal of clinical nutrition (2014-12-21)
Joseph J Lee, Jennifer E Lambert, Yelena Hovhannisyan, Maria A Ramos-Roman, Justin R Trombold, David A Wagner, Elizabeth J Parks
RESUMEN

Biochemical evidence has linked the coordinate control of fatty acid (FA) synthesis with the activity of stearoyl-CoA desaturase-1 (SCD1). The ratio of 16:1n-7 to 16:0 [SCD1₁₆] in plasma triacylglycerol FA has been used as an index to reflect liver SCD1₁₆ activity and has been proposed as a biomarker of FA synthesis, although this use has not been validated by comparison with isotopically measured de novo lipogenesis (DNL(Meas)). We investigated plasma lipid 16:1n-7 and FA indexes of elongation and desaturation in relation to lipogenesis. In this cross-sectional investigation of metabolism, 24 overweight adults, who were likely to have elevated DNL, consumed D2O for 10 d and had liver fat (LF) measured by magnetic resonance spectroscopy. Very-low-density lipoprotein (VLDL)-triacylglycerols and plasma free FA [nonesterified fatty acids (NEFAs)] were analyzed by using gas chromatography for the FA composition (molar percentage) and gas chromatography-mass spectrometry and gas chromatography-combustion isotope ratio mass spectrometry for deuterium enrichment. In all subjects, VLDL-triacylglycerol 16:1n-7 was significantly (P < 0.01) related to DNL(Meas) (r = 0.56), liver fat (r = 0.53), and adipose insulin resistance (r = 0.56); similar positive relations were shown with the SCD1₁₆ index, and the pattern in NEFAs echoed that of VLDL-triacylglycerols. Compared with subjects with low LF (3.1 ± 2.7%; n = 11), subjects with high LF (18.4 ± 3.6%; n = 13) exhibited a 45% higher VLDL-triacylglycerol 16:1n-7 molar percentage (P < 0.01), 16% of subjects had lower 18:2n-6 (P = 0.01), and 27% of subjects had higher DNL as assessed by using a published DNL index (ratio of 16:0 to 18:2n-6; P = 0.03), which was isotopically confirmed by DNL(Meas) (increased 2.5-fold; P < 0.01). Compared with 16:0 in the diet, the low amount of dietary 16:1n-7 in VLDL-triacylglycerols corresponded to a stronger signal of elevated DNL. The current data provide support for the use of the VLDL-triacylglycerol 16:1n-7 molar percentage as a biomarker for elevated liver fat when isotope use is not feasible; however, larger-scale confirmatory studies are needed.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
Palmitic acid, ≥99%
Sigma-Aldrich
Deuterium oxide, 99 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, "100%", ≥99.96 atom % D
Sigma-Aldrich
Palmitoleic acid, ≥98.5% (GC), liquid
Sigma-Aldrich
Palmitic acid, BioXtra, ≥99%
Supelco
Palmitic acid, analytical standard
Supelco
Palmitic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Palmitoleic acid, analytical standard
Sigma-Aldrich
Palmitic acid, ≥95%, FCC, FG
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)
Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 70 atom % D
Sigma-Aldrich
Palmitic acid, natural, 98%, FG
USP
Palmitic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Palmitic acid, ≥98% palmitic acid basis (GC)
Palmitic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, glass distilled
Sigma-Aldrich
Deuterium oxide, "100%", 99.990 atom % D
Sigma-Aldrich
Deuterium oxide, standard, 99.98 atom %±0.01 atom % D
Supelco
Palmitic acid, certified reference material, TraceCERT®
Sigma-Aldrich
Deuterium oxide, extra, 99.994 atom % D
Sigma-Aldrich
Deuterium oxide, 60 atom % D