Gap Junction Enhancer Potentiates Cytotoxicity of Cisplatin in Breast Cancer Cells.

Journal of cancer science & therapy (2012-11-01)
Ying Ding, Thu Annelise Nguyen

Cisplatin is one of the most widely used anti-cancer drugs due to its ability to damage DNA and induce apoptosis. However, increasing reports of side effects and drug resistance indicate the limitation of cisplatin in cancer therapeutics. Recent studies showed that inhibition of gap junctions diminishes the cytotoxic effect and contributes to drug resistance. Therefore, identification of molecules that counteract gap junctional inhibition without decreasing the anti-cancer effect of cisplatin could be used in combinational treatment, potentiating cisplatin efficacy and preventing resistance. This study investigates the effects of combinational treatment of cisplatin and PQ1, a gap junction enhancer, in T47D breast cancer cells. Our results showed that combinational treatment of PQ1 and cisplatin increased gap junctional intercellular communication (GJIC) as well as expressions of connexins (Cx26, Cx32 and Cx43), and subsequently decreased cell viability. Ki67, a proliferation marker, was decreased by 75% with combinational treatment. Expressions of pro-apoptotic factors (cleaved caspase-3/-8/-9 and bax) were increased by the combinational treatment with PQ1 and cisplatin; whereas, the pro-survival factor, bcl-2, was decreased by the combinational treatment. Our study demonstrates for the first time that the combinational treatment with gap junction enhancers can counteract cisplatin induced inhibition of gap junctional intercellular communication and reduction of connexin expression, thereby increasing the efficacy of cisplatin in cancer cells.

Redes sociales

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Investigación. Desarrollo. Producción.

Somos un proveedor líder para la industria de Ciencias de la Vida con soluciones y servicios para investigación, desarrollo y producción biotecnológicos, y para desarrollo y producción de tratamientos farmacéuticos

© 2021 Merck KGaA, Darmstadt, Alemania y/o sus filiales. Todos los derechos reservados.

Queda estrictamente prohibida la reproducción sin permiso de cualquiera de los materiales de la página web.