Merck
  • Inicio
  • Resultados de la búsqueda
  • Effect of prolactin-induced protein on human skin: new insight into the digestive action of this aspartic peptidase on the stratum corneum and its induction of keratinocyte proliferation.

Effect of prolactin-induced protein on human skin: new insight into the digestive action of this aspartic peptidase on the stratum corneum and its induction of keratinocyte proliferation.

The Journal of investigative dermatology (2014-10-15)
Shuji Sugiura, Misao Tazuke, Shoichi Ueno, Yasuo Sugiura, Ikuo Kato, Yoshimitsu Miyahira, Yutaka Yamamoto, Hiroshi Sato, Jun Udagawa, Masami Uehara, Hisashi Sugiura
RESUMEN

Human prolactin-induced protein (PIP) is a major protein found in exocrine fluids such as saliva and sweat. Intriguingly, PIP possesses residues (human PIP (hPIP): PIP (29-63)) that display similarity to the aspartic peptidase candidapepsin. Here, we aimed to determine the effect of PIP as a protease on normal skin structure. Using an adhesive tape-stripping technique, we applied hPIP peptide on the corneocytes of normal-appearing facial skin from infants with eczema and healthy infants and then analyzed the morphological structure of corneocytes with Nile Red fluorescence. We also repeatedly applied the hPIP peptide onto the surface of a three-dimensional (3-D) human skin model and then analyzed any changes to the stratum corneum and epidermis using light microscopy and scanning electron microscopy. In both infant groups, a decrease in hydrophobic lipids from the cornified envelope was observed after treatment with hPIP. The peptide hPIP appeared to digest the fine structure of the stratum corneum and induce a proliferation of epidermal keratinocytes within the 3-D human skin model. Our results suggest that aspartic peptidase of PIP found in sweat or saliva deteriorates the skin barrier in a de novo manner, which potentially leads directly to the proliferation of epidermal keratinocytes without any external antigenic factors.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Millipore
Sucrose, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Supelco
Hematoxylin
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5%
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Supelco
Sucrose, analytical standard
Sucrose, European Pharmacopoeia (EP) Reference Standard
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)