In vivo bacteriophage peptide display to tailor pharmacokinetics of biological nanoparticles.

Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging (2014-07-09)
Jessica R Newton-Northup, Marie T Dickerson, Senthil R Kumar, George P Smith, Thomas P Quinn, Susan L Deutscher
RESUMEN

Clinical use of most radiolabeled targeting agents has been limited because of the uptake and retention in kidney and/or liver. We hypothesized that bacteriophage (phage) display could be exploited to select for peptide sequences with fast clearance and low kidney uptake with the added ability to redirect phage clearance away from the reticuloendothelial system towards the kidney possessing rapid kidney clearance. In vivo phage display was performed to identify peptides displayed on phage that were excreted rapidly into the urine of mice. A novel in vitro assay using kidney cells, developed to predict in vivo kidney retention, and in vivo pharmacokinetic analyses were performed to characterize selected peptides/phage clones. Forty-three renal clearance clones (RCC) were identified. In vivo mixing experiments and in vitro kidney cell assays identified RCC1-02 as the lead compound. In vivo analysis of fluorescently labeled phage clones demonstrated the ability of RCC1-02 peptide to redirect the biodistribution of the large phage particle towards excretion via the kidney. Pharmacokinetic analysis of [(111)In]-radiolabeled peptides revealed that kidney retention of the control ErBB-2-avid peptide, [(111)In]DOTA-KCCYSL, at 2-h postinjection was 5.7 ± 0.7 %ID/g. In comparison, [(111)In]DOTA-RCC1-02 had kidney retention values of 1.66 ± 0.43 %ID/g, respectively. In vivo phage display can identify phage and corresponding peptides that rapidly clear the renal system. In the future, these peptides may be used to impart favorable pharmacokinetics onto a wide range of radioimaging or therapeutic macromolecules.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Dextrose, meets EP, BP, JP, USP testing specifications, anhydrous
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D-(+)-Glucose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium bicarbonate, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
HBTU, ≥98.0% (T)
SAFC
HEPES
SAFC
L-Glutamine
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
USP
Dextrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
SAFC
HEPES
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%