Merck

Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

Chemphyschem : a European journal of chemical physics and physical chemistry (2014-05-28)
Inga L Topolnicki, Paul A FitzGerald, Rob Atkin, Gregory G Warr
RESUMEN

The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n-alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge-like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water-like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen-bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Aluminum oxide, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Aluminum oxide, 99.997% trace metals basis
Sigma-Aldrich
Dodecane, anhydrous, ≥99%
Supelco
Aluminum oxide, activated, neutral, Brockmann Activity I
Supelco
Dodecane, analytical standard
Supelco
Aluminum oxide, for the determination of hydrocarbons
Sigma-Aldrich
Aluminum oxide, pellets, 3 mm
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
Aluminum oxide, Corundum, α-phase, -100 mesh
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
Aluminum oxide, calcined, powder, primarily α-phase, 100-325 mesh
Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I, free-flowing, Redi-Dri