Merck

Water scarcity conditions affect peach fruit size and polyphenol contents more severely than other fruit quality traits.

Journal of the science of food and agriculture (2014-06-21)
Mitra Rahmati, Gilles Vercambre, Gholamhossein Davarynejad, Mohammad Bannayan, Majid Azizi, Michel Génard
RESUMEN

The literature abounds with the impacts of drought conditions on the concentration of non-structural compounds (NSC) in peach fruits without distinction as to the direct effect of drought on fruit metabolism and its indirect effect through dilution. Moreover, there is a need to investigate the sensitivity of the fruit composition to progressive water deficit in semi-arid conditions, as well as the origin of variations in fruit composition - not only in carbohydrates and organic acids, but also in secondary metabolites such as polyphenols. The increase in stress intensity resulted in smaller fruits and a reduction in yield. Drought increased fruit dry matter content, structural dry matter (SDM) content and firmness due to lower water import to fruits, although drought reduced fruit surface conductance and its transpiration. Drought significantly affected the concentrations of each NSC either through the decrease in dilution and/or modifications of their metabolism. The increase in hexoses and sorbitol concentrations of fruits grown under drought conditions resulted in an increase in the sweetness index but not near harvest. Malic acid concentration and content:SDM ratio increased as drought intensified, whereas those of citric and quinic acids decreased. Polyphenol concentration and content increased under severe drought. The increase in stress intensity strongly affected fruit mass. The concentration of total carbohydrates and organic acid at harvest increased mainly through a decrease in fruit dilution, whereas the concentrations of polyphenols were also strongly affected through an impact on their metabolism.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Millipore
Sucrose, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5%
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sucrose, European Pharmacopoeia (EP) Reference Standard
Supelco
Sucrose, analytical standard
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard