Merck
  • Inicio
  • Resultados de la búsqueda
  • Cell cycle modulation by Marek's disease virus: the tegument protein VP22 triggers S-phase arrest and DNA damage in proliferating cells.

Cell cycle modulation by Marek's disease virus: the tegument protein VP22 triggers S-phase arrest and DNA damage in proliferating cells.

PloS one (2014-06-20)
Laëtitia Trapp-Fragnet, Djihad Bencherit, Danièle Chabanne-Vautherot, Yves Le Vern, Sylvie Remy, Elisa Boutet-Robinet, Gladys Mirey, Jean-François Vautherot, Caroline Denesvre
RESUMEN

Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sucrose, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Sucrose, ≥99.5%
Sigma-Aldrich
Sucrose, ACS reagent
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Supelco
Sucrose, analytical standard
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Magnesium chloride, suitable for insect cell culture, BioReagent, ≥97.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, clone DM1A, ascites fluid
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)