Merck

Mesoscopic metal nanoparticles doubly functionalized with natural and engineered lipidic dispersants for therapeutics.

ACS nano (2014-06-20)
Tatsuya Murakami, Hirotaka Nakatsuji, Nobuhiro Morone, John E Heuser, Fumiyoshi Ishidate, Mitsuru Hashida, Hiroshi Imahori
RESUMEN

Surface engineering of mesoscopic metal nanoparticles to increase biocompatibility and cell interaction is important for improvement of their therapeutic properties. Here, we describe a strategy to stabilize mesoscopic metal nanoparticles and to enhance their cell interaction by stepwise addition of (Z)-9-octadecenoate (oleate) and a cell-penetrating peptide-fused high-density lipoprotein (cpHDL). Oleate replaces a cytotoxic dispersant on the surface of gold nanorods (AuNRs), which enables subsequent cpHDL binding without causing aggregation. Notably, these two lipidic dispersants are probably intercalated on the surface. This procedure was also used to stabilize 20 nm spherical gold nanoparticles and 40 nm aggregates of 10 nm magnetite nanoparticles. cpHDL-bound AuNRs were internalized greater than 80 times more efficiently than poly(ethylene glycol)-conjugated AuNRs and were able to elicit cancer cell photoablation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Phenol Red, ACS reagent
Sigma-Aldrich
Phenol Red, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Rhodamine B, ≥95% (HPLC)
Sigma-Aldrich
Rhodamine B, for fluorescence
Supelco
Rhodamine B solution, 0.2% in isopropanol, for TLC derivatization
Supelco
Rhodamine B, analytical standard