Merck

Effects of low doses of quercetin and genistein on oxidation and carbonylation in hemoglobin and myoglobin.

Journal of dietary supplements (2014-07-16)
William Y Boadi, Damitea Johnson
RESUMEN

Protein-bound carbonyls have been shown to increase with age as well as in numerous diseases including rheumatoid arthritis, adult respiratory syndrome pulmonary fibrosis, diabetes, Parkinson's disease, and Alzheimer's just to mention a few. The effects of the flavonoids quercetin and genistein were investigated according to their ability to inhibit the oxidation of hemoglobin and myoglobin via the Fenton's pathway. Antioxidative activity of the flavonoids were determined by oxidizing hemoglobin and myoglobin in separate experiments with 50 μM Fe(2+) and 0.01 mM hydrogen peroxide (H2O2) with and without quercetin and/or genistein. The samples were treated singly with either quercetin, genistein, or in combination at concentrations of 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 μM, respectively, dissolved in dimethyl sulfoxide (DMSO). Samples were then incubated in a water bath at 37°C for 8, 12, and 24 hr, respectively. Levels of carbonylation were assayed by the protein carbonyl assay and the carbonyl levels quantified and expressed per mg of protein. The results indicate that protein carbonyls for samples treated with quercetin or genistein decreased in a dose-dependent manner compared to the controls. That of quercetin compared to genistein was more efficient in reducing the levels of protein carbonylation in hemoglobin and myoglobin, respectively. The combination of both flavonoids did show a gradual decrease in carbonyl compounds for only hemoglobin for all the doses and times tested. The results indicate that both flavonoids at low doses inhibited carbonylation in both hemoglobin and myoglobin and the inhibition may be attributed to the prevention of protein oxidation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
2,4-Dinitrophenylhydrazine, reagent grade, 97%
Sigma-Aldrich
Guanidine hydrochloride, ≥99.0% (AT)
Sigma-Aldrich
Guanidine hydrochloride, ≥98%
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Iron(II) chloride tetrahydrate, 99.99% trace metals basis
Supelco
Dimethyl sulfoxide, analytical standard
Supelco
Ethyl acetate, analytical standard
Supelco
2,4-Dinitrophenylhydrazine hydrochloric acid solution, ~0.005 M in ethanol, for TLC derivatization
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Guanidine hydrochloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Guanidine hydrochloride, ≥99% (titration), organic base and chaeotropic agent
Sigma-Aldrich
Guanidine hydrochloride, for molecular biology, ≥99%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
Trichloroacetic acid solution, 6.1 N