• Inicio
  • Resultados de la búsqueda
  • Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes.

Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes.

Developmental neurobiology (2014-12-03)
Eva Vergaño-Vera, Eva Díaz-Guerra, Eva Rodríguez-Traver, Héctor R Méndez-Gómez, Óscar Solís, Jaime Pignatelli, James Pickel, Sang-Hun Lee, Rosario Moratalla, Carlos Vicario-Abejón
RESUMEN

The transcription factor Nurr1 is expressed in the mouse olfactory bulb (OB), although it remains unknown whether it influences the generation of dopaminergic neurons (DA) (DA neurons) in cells isolated from this brain region. We found that expressing Nurr1 in proliferating olfactory bulb stem cells (OBSCs) produces a marked inhibition of cell proliferation and the generation of immature neurons immunoreactive for tyrosine hydroxylase (TH) concomitant with marked upregulations of Th, Dat, Gad, and Fgfr2 transcripts. In long-term cultures, these cells develop neurochemical and synaptic markers of mature-like mesencephalic DA neurons, expressing GIRK2, VMAT2, DAT, calretinin, calbindin, synapsin-I, and SV2. Concurring with the increase in both Th and Gad expression, a subpopulation of induced cells was both TH- and GAD-immunoreactive indicating that they are dopaminergic-GABAergic neurons. Indeed, these cells could mature to express VGAT, suggesting they can uptake and store GABA in vesicles. Remarkably, the dopamine D1 receptor agonist SKF-38393 induced c-Fos in TH(+) cells and dopamine release was detected in these cultures under basal and KCl-evoked conditions. By contrast, cotransducing the Neurogenin2 and Nurr1 transcription factors produced a significant decrease in the number of TH-positive neurons. Our results indicate that Nurr1 overexpression in OBSCs induces the formation of two populations of mature dopaminergic neurons with features of the ventral mesencephalon or of the OB, capable of responding to functional dopaminergic stimuli and of releasing dopamine. They also suggest that the accumulation of Fgfr2 by Nurr1 in OBSCs may be involved in the generation of DA neurons.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Sodium selenite, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Sodium selenite, 99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Progesterone, ≥99%
Sigma-Aldrich
1,4-Diaminobutane, 99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Progesterone, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Anti-GABA antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Sodium selenite, γ-irradiated, lyophilized powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-MAP2 (2a+2b) antibody produced in mouse, clone AP-20, ascites fluid
Sigma-Aldrich
Progesterone, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Progesterone, meets USP testing specifications