• Inicio
  • Resultados de la búsqueda
  • Reduction of hydrogen sulfide synthesis enzymes in the esophagus of patients with achalasia: effect of hydrogen sulfide in achalasia.

Reduction of hydrogen sulfide synthesis enzymes in the esophagus of patients with achalasia: effect of hydrogen sulfide in achalasia.

Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society (2015-06-20)
L Zhang, W Zhao, Z Zheng, T Wang, C Zhao, G Zhou, H Jin, B Wang
RESUMEN

The aim of the present study was to investigate whether the synthesis of endogenous hydrogen sulfide (H2 S) was altered in achalasia patients and to determine the effects of H2 S on esophageal motility. (1) Tissue samples in lower esophageal sphincter (LES) were obtained from 22 achalasia patients during peroral endoscopic myotomy. LES muscle from eight esophageal carcinoma patients was obtained as control. The expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) was detected by immunohistochemical staining. (2) Rabbit esophageal smooth muscle strips were used to measure isometric contractions. The effects of sodium hydrosulfide (NaHS) and L-cysteine on contractile activity and bethanechol-stimulated contractile activity were evaluated. The contraction of esophageal muscle strips was also measured after the inhibition of CBS and CSE by aminooxyacetic acid (AOA) and propargylglycine (PAG). Both CBS and CSE could be detected in biopsies from achalasia patients and controls. Compared with controls, the expression of CBS and CSE in the LES of achalasia patients was significantly reduced (p < 0.001). Both NaHS and L-cysteine concentration-dependently inhibited esophageal contractile activity (both p < 0.05). After inhibition of CBS and CSE by PAG and AOA, esophageal contractile activity increased significantly, and this effect could be restored by NaHS but not L-cysteine (p < 0.05). H2 S synthesis enzymes are significantly reduced in patients with achalasia compared with the controls. H2 S inhibits esophageal contractile activity concentration-dependently, and the inhibition of H2 S synthesis enzymes increases esophageal contractile activity. H2 S might be involved in the development of achalasia.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
L-Cysteine, 97%
Sigma-Aldrich
L-Cysteine, from non-animal source, BioReagent, suitable for cell culture, ≥98%
SAFC
L-Cysteine
Sigma-Aldrich
L-Cysteine, BioUltra, ≥98.5% (RT)
Sigma-Aldrich
L-Cysteine, ≥97%, FG
Sigma-Aldrich
DL-Propargylglycine, cystathionine γ-lyase inhibitor
Sigma-Aldrich
L-Cysteine, produced by Wacker Chemie AG, Burghausen, Germany, ≥98.0%