Merck
  • Home
  • Search Results
  • Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells.

Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells.

PloS one (2015-05-27)
Katalin Kiss, Kornélia Baghy, Sándor Spisák, Szilárd Szanyi, Zsolt Tulassay, Attila Zalatnai, J-Matthias Löhr, Ralf Jesenofsky, Ilona Kovalszky, Gábor Firneisz
ABSTRACT

Diabetes mellitus is linked to pancreatic cancer. We hypothesized a role for pancreatic stellate cells (PSC) in the hyperglycemia induced deterioration of pancreatic cancer and therefore studied two human cell lines (RLT-PSC, T3M4) in hyperglycemic environment. The effect of chronic hyperglycemia (CHG) on PSCs was studied using mRNA expression array with real-time PCR validation and bioinformatic pathway analysis, and confirmatory protein studies. The stress fiber formation (IC: αSMA) indicated that PSCs tend to transdifferentiate to a myofibroblast-like state after exposure to CHG. The phosphorylation of p38 and ERK1/2 was increased with a consecutive upregulation of CDC25, SP1, cFOS and p21, and with downregulation of PPARγ after PSCs were exposed to chronic hyperglycemia. CXCL12 levels increased significantly in PSC supernatant after CHG exposure independently from TGF-β1 treatment (3.09-fold with a 2.73-fold without TGF-β1, p<0.05). The upregualtion of the SP1 transcription factor in PSCs after CHG exposure may be implicated in the increased CXCL12 and IGFBP2 production. In cancer cells, hyperglycemia induced an increased expression of CXCR4, a CXCL12 receptor that was also induced by PSC's conditioned medium. The receptor-ligand interaction increased the phosphorylation of ERK1/2 and p38 resulting in activation of MAP kinase pathway, one of the most powerful stimuli for cell proliferation. Certainly, conditioned medium of PSC increased pancreatic cancer cell proliferation and this effect could be partially inhibited by a CXCR4 inhibitor. As the PSC conditioned medium (normal glucose concentration) increased the ERK1/2 and p38 phosphorylation, we concluded that PSCs produce other factor(s) that influence(s) pancreatic cancer behaviour. Hyperglycemia induces increased CXCL12 production by the PSCs, and its receptor, CXCR4 on cancer cells. The ligand-receptor interaction activates MAP kinase signaling that causes increased cancer cell proliferation and migration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, powder, contains NaCl as solubilizer
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
L-(−)-Glucose, ≥99%
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, ≥970 μg/mg (USP XXIV)
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, ≥98% (HPLC), potency: ≥970 μg per mg (USP XXIV), γ-irradiated, suitable for cell culture
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, pH 7, ≥98%
Sigma-Aldrich
AMD3100 octahydrochloride hydrate, ≥97% (NMR), solid
Sigma-Aldrich
Tris(tert-butoxy)silanol, packaged for use in deposition systems
Sigma-Aldrich
Tris(tert-butoxy)silanol, 99.999%