Merck

Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites.

Nanoscale (2015-09-26)
Min-Quan Yang, Chuang Han, Nan Zhang, Yi-Jun Xu
RESUMEN

Considerable effort has been made to fabricate graphene (GR)/semiconductor composite photocatalysts, by using graphene oxide (GO) as the most widely used precursor of GR, toward an improved efficacy of solar energy conversion. However, thus far, the role of GO in the preparation and photocatalytic activity of GR/semiconductor composites has remained rather elusive. Herein, we report a simple yet efficient approach to significantly improve the photocatalytic activity of GR/semiconductor CdS composites via the acid treatment of GO, which downsizes GO sheets into smaller ones with enhanced colloidal stability and oxygenated functional groups. The graphene/CdS composites, which are prepared using this type of downsized GO as the precursor of GR, exhibit remarkably higher visible-light photoredox activity than those prepared from the direct reduction of GO without acid treatment. Our comparative results directly highlight the important effect of physico-chemical features of GO on the preparation and thus photoactivity of GR/semiconductor composites; in particular, the rational tailoring of GO could open a new doorway to optimize the activity of GO-derived GR/semiconductor composite photocatalysts.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
N,N-Dimethylformamide, biotech. grade, ≥99.9%
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Supelco
4-Nitrophenol
Cadmium(II) acetate, SAFC Hitech®, anhydrous, 99.995%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
4-Nitrophenol, ReagentPlus®, ≥99%
Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
N,N-Dimethylformamide, for molecular biology, ≥99%
Sigma-Aldrich
Cadmium(II) acetate, anhydrous, 99.995%
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
N,N-Dimethylformamide, ReagentPlus®, ≥99%
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
N,N-Dimethylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
N,N-Dimethylformamide, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
4-Nitroaniline, ≥99%