Merck

Determination of dihydromyricetin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study.

Journal of pharmaceutical and biomedical analysis (2015-07-03)
Qing Tong, Xiaolong Hou, Jianguo Fang, Wenqing Wang, Wei Xiong, Xu Liu, Xuejia Xie, Chunyang Shi
RESUMEN

Ampelopsis grossedentata (Hand.-Mazz.) W.T. Wang has long been used as a traditional Chinese medicinal herb among the indigenous people in the Yangtze River region of China. Dihydromyricetin (DMY) is the most abundant (approximately 30%) and bioactive constituent in A. grossedentata (Hand.-Mazz.) W.T. Wang, and recent studies have demonstrated its various pharmacological activities. In the present study, a first specific, sensitive, rapid and reliable LC-MS/MS method for the determination of DMY in rat plasma was developed and validated. The plasma samples were prepared with protein precipitation method, and chromatographic separation was performed on a Welch Ultimate XB-C18 column (50 × 2.1 mm, 5 μm) using a gradient elution with water and acetonitrile. The mass spectrometry (MS) analysis was conducted in negative ionization mode with multiple reaction monitoring (MRM) transitions at m/z 319.1→192.8 for DMY and m/z 609.0→301.2 for rutin (IS). The plasma concentration profiles and pharmacokinetic parameters were analyzed after oral administration of dextroisomer and racemate DMY at the dose of 100 mg/kg in rats. The method validation was conducted over the calibration range of 10.0-5000 ng/ml with the intra- and inter-day precision and accuracy within 12.0% (RSD) and 5.6% (RE). The recoveries, matrix effect and stability under different conditions were all proved acceptable. The values of Tmax, AUC(0-∞) and Vd were significantly different between the groups of dextroisomer and racemate DMY (P<0.05), and pharmacokinetic results revealed their poor absorptions into blood, probably high tissue distributions and slow elimination processes. The present study will provide helpful information for the further studies and future clinical applications of DMY.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, suitable for plant cell culture
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 40.0% 2-propanol, 0.05% formic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 0.1 % (v/v) formic acid, 5 % (v/v) water, suitable for HPLC
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles