Merck

Abcb1 gene expression pattern and function of copper detoxification in Fujian oyster, Crassostrea angulata.

Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology (2015-08-28)
Bo Shi, Xu Xiang, Yizhou Ke, Long Zhou, Caihuan Ke
RESUMEN

Oysters are considered hyper-accumulators of Cu, but the molecular mechanism by which they maintain Cu cell homeostasis is still unclear. ATP-binding cassette protein subfamily B member 1 (ABCB1, P-glycoprotein) can transport a variety of substrates across the cell membrane in aquatic animals. In this study, to provide insight into the roles of ABCB1 in resistance against Cu in oysters, complete cDNA of abcb1 gene in Crassostrea angulata was cloned and analyzed. The complete sequence of C. angulata ABCB1 showed high identity to ABCB1 from other bivalves and contained some classical motifs of ABCB transport proteins. Abcb1 was mainly expressed in the apical epithelial cell of gills and epithelia of mantles. Abcb1 expression and Cu accumulation were also studied in control oysters and oysters exposed to Cu (30, 100, 300 μg/L Cu, 1-15 days). Cu accumulation in the gill and mantle were measured after abcb1 gene interference. The complete sequence of C. angulata ABCB1 showed high identity to ABCB1 from other bivalves and contained some classical motifs of ABCB transport proteins. The mRNA transcript of abcb1 showed hypersensitivity to Cu exposure. A concentration-dependent highest abcb1 mRNA level (up to 5.61-fold to the control) in the gill and mantle existed across all Cu exposure concentrations after 3 days of Cu exposure. The gill and mantle Cu concentration were significantly higher after the abcb1 mRNA interference. According to these results, it is here speculated that ABCB1 may underlie cell protection against Cu in C. angulata.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Nitric acid, ACS reagent, ≥90.0%
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Nitric acid, puriss. p.a., ≥65% (T)
Sigma-Aldrich
Nitric acid, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
Nitric acid, ACS reagent, 70%
Sigma-Aldrich
Nitric acid, red, fuming, HNO3 >90 %
Sigma-Aldrich
Nitric acid, puriss. p.a., reag. ISO, reag. Ph. Eur., for determinations with dithizone, ≥65%